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Abstract

Bachelor of Engineering (Hons.)

Optimisation based trajectory planning using robot perception

by Ashutosh Gupta

Ultrasound scanning is an efficient imaging modality preferred for quick medical procedures.

However, due to the lack of skilled sonographers, researchers have developed many Robotic

Ultrasound System (RUS) prototypes for various procedures. Most of these systems have a

human-in-the-loop and require an expert to point the robot to the region of the subject to be

scanned. Only a few systems try to incorporate some knowledge from the exterior shape of

the subject for ultrasound scanning. Accurate 3D surface reconstruction of a patient’s exterior

can enable an RUS to perceive subjects more like a clinician would. It can help localize the

subject for the robot while eliminating input from an expert. Ultrasound scanning trajectories

can be better planned if the RUS first detects critical regions on the surface of the subject

and corresponding curvatures. In this paper, we use an RGB-D sensor to acquire point clouds

representing the 3D surface of the subject, which in the present work is for a lower-torso leg

phantom. We present a consolidated pipeline for creating an optimized 3D surface reconstruction

of a subject and use it to autonomously identify a region of interest for scanning femoral vessels

with an ultrasound probe. To make our system more robust to inter-subject variations in shape

and size, we incorporate a trajectory optimization module of the RUS-mounted RGB-D sensor.

To this end, we introduce a comprehensive evaluation score to quantify the quality of point

cloud reconstructions. The resulting improvements in 3D surface scanning and reconstruction

enable near-automation in generating ultrasound scanning trajectories for femoral vessels. Our

pipeline produces ultrasound images with an average ZNCC score of 0.86 and our 3D point cloud

reconstructions are accurate up to 1e-5 m based on the Chamfer distance from a ground-truth

high-resolution CT scan.
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Chapter 1

Introduction

1.1 Background

Ultrasound (US) examination is an indispensable tool in quick diagnostic and medical intervention

procedures [6]. It has several advantages such as high portability, zero ionizing radiation, and

low costs which make it suitable for emergency interventions such as Extracorporeal Membrane

Oxygenation (ECMO), and Resuscitative Endovascular Balloon Occlusion (REBOA) [18] [10].

Despite its strengths, ultrasound scanning has a strong dependence on the skills of trained human

professionals (Sonographers) [3]. Well-trained sonographers are not present everywhere, and so

a Robotic Ultrasound System (RUS) could provide medical assistance when professionals are

absent [3].

To get a robot to perform ultrasound scanning, we need to replicate a wide variety of steps

typically performed by a sonographer like - (1) finding an appropriate area on the patient to scan,

(2) moving the ultrasound probe within the region of interest while making subtle corrections to

the probe’s pose, especially over regions of high curvature, and (3) providing safe, significant and

accurate forces through the probe to maintain diagnosable image quality while preventing patient

injury. In a typical RUS, the Region of Interest (RoI) to scan is defined by human input from a

skilled operator, e.g. a sonographer or doctor, based on internal as well as superficial anatomical

landmarks on the skin [2] [19]. Identifying these landmarks requires a 3D understanding of the

skin of the subject. An accurate 3D reconstruction can also help provide normals for controlling

the ultrasound probe.

Reconstructions in the form of 3D point clouds provide multiple features such as surface normals,

curvature etc, that can be analyzed for the above-mentioned purposes. RGB-D sensing provides

an accessible modality for capturing 3D point cloud data and is increasingly being used in RUSs.

Having an accurate point cloud representation of the objects present in the field of view of the

1



Chapter 1. Introduction 2

sensor, can help us localize the subject and identify based on superficial landmarks, where to

position the US probe. However, surface reconstruction pipelines usually require human input

to infer RGB-D sensor trajectories. In the case of medical applications, this input is required

from experts. Additionally, surface reconstruction is prone to noise stemming from incorrect

sensor placement and changes in environmental factors like lighting, sterile casings etc. Hence,

elimination of human input for automation and improvement of reconstruction quality are both

open areas in research.

1.2 Our Work

Figure 1.1: Our RUS setup, similar to [6], with novelties in evaluation score and optimization
for automated US trajectory generation.

In this thesis, we present a novel pipeline for 3D Surface Reconstruction with an RGB-D sensor

trajectory optimization module for automatic generation of ultrasound scanning trajectories.

We eliminate human inputs by automatically finding the start and end scanning points for our

RGB-D sensor. Then, we optimize the height of the sensor to produce the highest fidelity point

cloud reconstruction of the subject. Lastly, we use the identified RoI and surface normals of the

best 3D point cloud reconstruction from our optimization to generate an ultrasound scanning

trajectory. This work is done in the context of scanning femoral vessels and we have designed the

pipeline focusing on scanning the leg region. We have tested our pipeline on a medical phantom

and have achieved near automation in optimized RGB-D and ultrasound scanning.
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Main contributions are:

• A novel 3D surface reconstruction pipeline which feeds into automated ultrasound scanning

trajectory generation.

• A comprehensive evaluation score for quantifying the quality of reconstructed point clouds.

• An evolutionary algorithm-based real-time optimization module that determines the best

trajectory for the RGB-D sensor for surface reconstruction.

The rest of the thesis is divided as follows - Chapter 2 discusses related work in the areas of

RUS, RGB-D based 3D reconstruction, sensor position optimization, and RoI for ultrasound

scanning. Chapter 3 discusses our methods, followed by our results in Chapter 4. Finally, we

present our conclusions and future work in Chapter 5.



Chapter 2

Related Work

In, [11], an RUS is presented with an automatic vessel tracking strategy. The pipeline was

applied to provide 3D internal volume results of the lower limb arteries. The system can calculate

the distance between the center of the vessel and the center element of the probe. However,

the system performance heavily depends upon the detection and tracking of the vessels. An

RUS developed by [5] autonomously generates trajectories based on the points selected by the

physician marked in an MRI or CT scan. This system enables autonomy but is dependent on

MRI/CT scans which are expensive and not always available. We work on improving both these

aspects.

A Kinect RGB-D sensor was used in [6] to obtain 3D contours of a lumbar phantom. They are

able to obtain a scanning region but this is heavily reliant on heuristic rules and user experience.

They also mention parameters which can be varied by the user for various cases. Our work differs

from this by using a minimally heuristic approach. Another RGB-D-based RUS is presented

by [8] to detect sarcopenia in legs. They perform a piece-wise curve fitting to understand the

leg surface from 8 point clouds. Their system has only 4 DoF and takes 12 minutes to perform

RGB-D scanning and curve fitting for US probe positioning. We do not use computationally

expensive math operations such as curve-fitting.

For estimating the optimal trajectory of the RGB-D sensor, there exist methods like [17], which

uses filtering of multiple RGB frames to optimize the trajectory. This method only shown to

work in simulated conditions. Similarly, [7] also presents results only in simulation. These

methods therefore can’t be used for real-world scenarios especially surgical settings where there

are multiple occlusions present.

Most RUS systems depend on human operators to define the path that the ultrasound probe

should trace. [4] uses an operator defined volume of interest. [20] presents an RUS system

to enable needle insertion. This system needs user defined points on the surface to define the

4



Chapter 2. Related Work 5

needed trajectory for maximum vessel coverage. Some works like [3] automate RoI detection

with only ultrasound images and do not take into consideration the exterior shape of the subject.

Very few systems like [6] automate RoI detection for ultrasound scanning using external surface

information.



Chapter 3

Methods

3.1 Robot Setup

Our system uses 2 sensors: an Intel Realsense D435i RGB-D sensor and a Fukuda Denshi

portable point-of-care ultrasound scanner. Both these sensors are mounted on a Universal Robot

UR3e manipulator. The experiments were conducted on a lower torso ultrasound training model

BPF1500-HP. See Fig. 1.1 for our RUS Setup. In this work, we assume that the subject is in a

supine position on a flat surface and is in the field-of-view of the RGB-D sensor. Our pipeline

has been implemented in C++ and Python, with functions from Point Cloud Library [15] and

Robot Operating System (ROS) [13] was used to combine all of the components.

3.2 Architecture Overview

Our pipeline, seen in Fig. 3.1, has the following modules

1. Clustering for leg localization.

2. Generation of start and end points for RGB-D scanning trajectory.

3. Composite surface reconstruction as we read point cloud data from the RGB-D sensor.

4. Computation of an evaluation score based on the quality of reconstruction.

5. RGB-D sensor trajectory optimization.

6. RoI detection and ultrasound trajectory generation.

6



Chapter 3. Methods 7

Figure 3.1: Surface Reconstruction Pipeline with novel contributions highlighted

We first take a single sensor reading and obtain the point cloud of the subject, along with the

base and other objects, if any. Our clustering module finds the points corresponding to the skin

of the subject and finds an axis to perform the RGB-D scan along. We generate a trajectory

along this axis, scan along this trajectory and compute an evaluation score. This score is utilized

by an optimizer to find the optimized trajectory producing the highest evaluation score. Once

we find the optimized trajectory, we perform one last RGB-D scan along this trajectory and

use the reconstruction from this scan to find the RoI. The RoI and its corresponding surface

normals are then used to generate an ultrasound scanning trajectory.

3.3 Point Clustering for Leg Localization

Point clustering is required to identify all points in the point cloud corresponding to the skin

of the subject being scanned. Once the subject is positioned in the sensor field-of-view, we

position the RGB-D sensor at the highest possible height. We then capture a single instance

point cloud from this height representing the subject on a relatively flat base. This point cloud

is downsampled with a 5 mm voxel size. The color-based region growing clustering algorithm

from [21] is used for generating clusters from this downsampled point cloud. We use a distance
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threshold value of 5 and a point color threshold value of 10 for the region growing. The region

color threshold is 10 for the merging process. We use a high point-color threshold to compensate

for variations in skin color for a single subject. This method is also agnostic to skin tone as

we do not look for a specific skin color. We then localize the leg by finding the cluster which

corresponds to the skin of the subject. This is done by applying a selection criteria to the clusters.

Given that the leg has higher curvature than the base and covers the majority of field-of-view,

the cluster corresponding to the leg will have both the highest average curvature and no. of

points.

C = argmaxi(α ∗ (
∑

iN∑
nN

)) + (1− α) ∗ (
∑

i κ∑
n κ

)) (1)

i is the index of the selected cluster where
∑

iN is the total number of points in a cluster Ci and∑
i κ is the sum of curvature of the cluster i. There are n such clusters to choose from. Also, α

and (1− α) are the weights given to the respective criteria. Based on experimental observations,

we set α = 0.5. The single instance point cloud, identified clusters, and the selected cluster are

visualized in Fig. 3.2.

Figure 3.2: Results from color-based region growing clustering - a) Single instance point cloud;
b) Identified clusters; c) Selected cluster with selection criteria (Eqn. 1) corresponds to the leg

3.4 Start and End Point Generation for RGB-D Scanning

Once the leg is localized, we generate a trajectory that the RGB-D sensor will follow for a

detailed, closer scan. To obtain the start and end points of this trajectory, we use the principal

axis of the selected cluster. For this, we flatten the selected cluster point cloud from the previous

module along the z axis and find the 2D convex hull for the flattened point cloud. A covariance

matrix is computed for the flattened point cloud and the eigen vectors for this matrix are

computed. The largest eigen vector corresponds to the direction of the principal axis. We extend

the principal axis vector in both directions from the centroid of the flattened point cloud. The

intersection points of the principal axis with the edges of the 2D convex hull are found. The
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(x, y) coordinates of the start and end points of the RGB-D scanning trajectory are the (x, y)

coordinates of these intersection points. The points are visualized in Fig. 3.3. The z coordinates

(height) of the start and end points are obtained from the optimization module.

Figure 3.3: Steps in start and end point detection - a) Selected cluster point cloud along with
the centroid, principal axis (red) and 2D convex hull (green); b) Detected start and end points

for the RGB-D scanning trajectory along the principal axis.

3.5 Composite Surface Reconstruction

This module discusses the steps for processing frame-wise point clouds and generating a composite

surface reconstruction for every RGB-D scanning trajectory. The RGB-D sensor was calibrated

by obtaining the accurate transform from the sensor’s optical frame to the robot base frame using

an extensive CAD model of the robot and the camera mount. Frame-wise point clouds from the

RGB-D sensor are read and transformed from the sensor frame to the robot base frame using

parameters from the sensor calibration. Once in the base frame, they are stitched together as

the sensor moves and newer points are read. The stitched point cloud is downsampled with voxel

size 5 mm. This stitched point cloud is the composite point cloud from a given scan trajectory

and is clustered again to obtain the cluster corresponding to the leg of the subject. This cluster

point cloud, and the larger composite point cloud are used for the remaining pipeline.

3.6 Evaluation Score Computation

We have identified certain metrics to quantify the quality of the surface point cloud. In this

module, we compute a score based on these metrics for evaluating the quality of the surface

reconstruction and use this score to optimize the RGB-D scanning trajectory. The metrics are:
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3.6.1 Ratio of Inliers

The quality of point clouds is dependent on the presence of outliers. Outliers signify regions that

were not reconstructed properly, whereas the remaining points (inliers) signify well reconstructed

regions. For quantifying the quality of our point cloud, we use Metric1 where

Metric1 =
No. of inlier points

Total No. of points
(2)

in the evaluation score. Outliers are detected by the application of the statistical outlier detection

algorithm [16] to the selected cluster. We consider 50 nearest neighbours and a standard deviation

of 0.75 for our implementation. This gives us distinct outliers on the cluster point cloud. The

inliers after the removal of detected outliers are visualized in Fig. 3.4. Additionally, we consider

the points above and below the surface which are removed during clustering to be outliers as

well while determining Metric1.

Figure 3.4: (Left) Top view of the cluster point cloud, (Right) Computed inliers highlighted in
red.

3.6.2 Ratio of Continuous Area to Total Area

Different regions on the scanning subject could be reconstructed with different point densities.

While most regions have uniform point density and are continuous, some regions lack points

altogether and form hole-like regions on the surface resulting in concavities, as seen in Fig. 3.5.

To quantify our surface reconstruction as a function of continuous regions, we use a ratio of

continuous area to the total area of the reconstruction. We obtain the continuous 2D projected

area of the cluster point cloud by discounting discontinuous cavity regions and divide this by
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Figure 3.5: Top and side view of a cluster point cloud with a concavity.

the total 2D projected area of the cluster point cloud (Eqn. 3). We obtain these quantities by

computing the area of the concave and convex hulls after 2D projection respectively.

Metric2 =
Area of 2D Concave Hull

Area of 2D Convex Hull
(3)

3.6.3 Normalized Standard Deviation of Neighborhood Normals

Distortions present in reconstructions, especially when the sensor is too far from the subject,

produce inconsistent surface normals which signify poor reconstructions. This characteristic

needs to be penalized in the trajectory optimization. We quantify this by calculating the

normalized standard deviation in surface normals for sample points in the cluster point cloud.

t points are selected on the cluster using the farthest point sampling [12]. For each of these

sampled points, we select k-neighbouring points and calculate variance (V ar) of the surface

normals in terms of the angle between them for each of these clusters. The final metric, which is

the normalized standard deviation of all the chosen normals is given by

Metric3 =

√ ∑
t V ar(cos−1(ni.nj)t)∑

tMean(cos−1(ni.nj)t)
(4)

where ni and nj are the two neighbouring normals on the surface at tth point selected using

farthest point sampling. For our experiments t = 50 and k = 20. Finally -

EvaluationScore = Metric1 +Metric2 −Metric3 (5)

3.7 RGB-D Scanning Trajectory Optimization

We hypothesized that inter-subject variations in shape and size require changes in RGB-D

sensor positioning for good 3D reconstructions. We performed a simple experiment to test this
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Table 3.1: Cylinder Radii, Optimized Height and Evaluation Scores

Radius of
Cylinder
(cm)

Optimal
Height
(cm)

Evaluation Score at
Optimal Height

Evaluation Score
at height 26.5 cm

4.5 25.28 0.5794 0.5457

5.5 23.48 0.5338 0.4947

8 30.52 0.5448 0.5313

hypothesis. Considering an over-simplified geometric primitive for a leg, we use cylinders of

different radii and perform RGB-D scans using trajectories with constant heights. The results, as

seen in Table 3.1, show different optimal heights obtained by using the evaluation score defined

in 3.6. We observe that the optimal height differs with different radii and the data confirms

our hypothesis. We observe that the evaluation score is significantly lower at a close-to-mean

height for all the three cylinders than their optimal height. Additionally, there exists no linear

relationship between the radius of the cylinder and the optimal height. Even if this non-linear

relationship was to be estimated for the cylinders, there is very low probability that it would

hold to varying human anatomies where we observe regions of differing curvatures. This justifies

a per-subject RGB-D scanning trajectory optimization. Further, we test varying heights for our

RGB-D scanning trajectories as we expect the lower torso and the upper leg region to be uneven

in curvature.

For the trajectory optimization module, the orientation of sensor is always anti-parallel to the

flat surface on which the subject is kept as shown in Fig. 1.1. The initial and the final poses

of the sensor come from the method mentioned in Sec. 3.2 as Xi and Xf . The trajectory is

discretized into n segments. Intermediate poses of the start of each segment are given by,

Xn = nλXi + (1− nλ)Xf

zn = a0 + a1sin(k1nλ) + a2sin(k2nλ)

+ a3cos(k1nλ) + a4cos(k2nλ)

(6)

where X = [x, y]T . a0, a1, a2, a3, a4 are the coefficients of the parameterized equation. k1 and k2

are the frequencies of the sin and cos function. nλ represents the nth segment. We optimize

using the Cross Entropy Maximization (CEM) optimizer[1], an evolutionary algorithm, to find

the optimized values for a0, a1, a2, a3, a4.

For every epoch of optimization, we run through the steps 3-5 in this chapter for every agent.

Based on the evaluation score calculated, the optimizer selects few best agents and updates the

mean and variance of each of the coefficients. We use Nagents = 10, Nbest = 3, Nepochs = 7.
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3.8 RoI Detection and US Trajectory Generation

The optimized reconstructed surface point cloud is used for RoI detection. We look to start at

the inguinal fold and scan along and the inner regions of the leg bifurcation along the left leg

(highlighted in Fig. 3.6). The boundary of this RoI is used to generate a US scanning trajectory.

To obtain the RoI defined above, we threshold the cluster point cloud from the final optimized

RGB-D scan based on curvature. We use the average curvature of the cluster point cloud and

retain only points with curvature above this threshold as part of the RoI. We then find 7 points

along the boundary of the RoI on the left leg using the principal axis and use these points to

define poses of the ultrasound trajectory. We use the hybrid force position controller + SLERP

from the work [3] to scan the leg along these trajectory points. The required surface normals for

SLERP computation are calculated by applying [14] to the optimized reconstruction.

Figure 3.6: Leg cluster with detected RoI in purple and US trajectory in green.



Chapter 4

Experiments and Results

The following experiments were conducted on the lower torso ultrasound training phantom.

4.1 Clustering

We test the robustness of the color-based region growing clustering to our application by applying

it to the phantom with occlusions on the skin and with multiple objects on the base, near the

leg, to replicate real-life medical and surgical scenarios. We provide visual and qualitative results

of the clustering performance in Fig. 4.1.

We observe that smaller occlusions, such as clear tubes, needles, catheters etc. are not detected

separately and are considered as part of the skin of the subject. This is perhaps due to their small

size and/or translucent nature. These occlusions could be considered as part of the scanning

surface and be included in RoI and US trajectory generation. This can lead to discontinuous

US scans. However, a big positive is the fact that other larger occlusions such as surgical cloth,

gloved hands and blood/wounds are identified as not being a part of the subject’s skin and

excluded from the pipeline for RoI detection and US trajectory generation.

4.2 RGB-D Trajectory Optimization

Our trajectory optimizer converges after the 7th epoch and attains a maximum evaluation score

of 0.55. We consider the optimizer to have converged when the maximum standard deviation of

the past 5 epochs is below 1.2 ∗ standard deviation of last epoch. We check this criterion for the

last 6 epochs of our optimization loop.

14
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Figure 4.1: Multiple scenarios with occlusions on the leg phantom and presented reconstructions
with selected leg clusters.

Each epoch takes 2.5 minutes for completion. The plot shown in Fig. 4.2 shows the evaluation

score along with its standard deviation at each of the epochs. 4.2 a. shows the rise in evaluation

scores with epochs. The standard deviation in evaluation score reduces drastically post epoch 5.

It is observed that the height of the optimized RGB-D scanning trajectory is in the range 0.22 -

0.24 m when the minimum and the maximum heights possible are 0.17 m and 0.35 m respectively.

We also show the 3D reconstructions generated at epochs 0, 3 and 7 in Fig. 4.3 demonstrating

the improvement in point clouds as we reach an optimized RGB-D scanning trajectory.

We also performed an ablation study to find the effect of each of the metrics on the evaluation

score. We plot the results in Fig. 4.2 b, c and d. Each metric is important in the evaluation score.

Graph b. shows a converging evaluation score with low standard deviation showing that the

evaluation score is stable without Metric1. However, there is no clear distinction in evaluation

scores over time. This shows that Metric1 is a clear distinguishing factor and and is needed

in our evaluation score. Graph c. shows that the evaluation score is unstable without Metric2

as we see varying standard deviations. This signifies that Metric2 is required in the evaluation

score calculation. We observe that the evaluation score without Metric3, as seen in graph d.

is similar to graph a, marking a lower sensitivity of the evaluation score to Metric3. This is
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perhaps due to the skewed penalization in Metric3. However, convergence without Metric3 still

takes longer and is seen at Epoch 9.

The reconstructed point cloud from the optimized scan is overlaid on a ground truth point cloud

generated from a CT (Computed Tomography) scan of the lower torso ultrasound phantom. We

obtained a Chamfer distance CD = 5e-5 m between the reconstructed and the ground truth

point clouds.

Figure 4.2: Plot of the evaluation score vs epochs for the optimization Llop a) with all three
metrics; b) without Metric1; c) without Metric2; d) without Metric3; in the evaluation score.

The scores in b, c, d are scaled between 0 and 1 for equal comparison.
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Figure 4.3: Improving reconstructed point clouds with increase in epochs in the optimization
loop.

Figure 4.4: a) RoI based US trajectory overlaid on the 3D reconstructed surface; b) and c)
Femoral vessels captured in our generated US trajectory (blue)
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4.3 Ultrasound Scanning

The US trajectory generated from the RoI is used to drive the US probe over the subject. The

ultrasound images collected are tested for quality. The trajectory as well as the ultrasound

images are shown in Fig 4.4.

We use zero-normalized cross correlation (ZNCC)[9] score to quantify the quality of the ultrasound

images. A ZNCC score of 1 represents a perfect scan. The quality of the scan is a direct function

of the estimated surface normals which in turn is a function of the reconstructed surface. From

the Table 4.1, we see that the ultrasound images collected from the optimized RGB-D scan

produce the best ZNCC score compared to the other two RGB-D scans taken at constant heights

h = 0.17m and h = 0.35m. These heights represents the minimum and maximum scanning

height possible for our robot setup. We also present a score from a non-expert user, who was

introduced to our setup but had knowledge about the general location of femoral vessels in legs.

The femoral vessels are visible in 85% of the ultrasound frames captured from the generated

trajectory of our pipeline. Whereas, the femoral vessels are visible in only 70% of the ultrasound

frames captured in a trajectory defined by a non-expert user. We provide this comparison as we

are aiming for applicability in scenarios where experts are not available.

Table 4.1: ZNCC score comparison for various trajectories

US Trajectory From ZNCC score of US images

Optimized RGB-D trajectory 0.861

Constant h=17cm RGB-D 0.838

Constant h=35cm RGB-D 0.835

Non-expert 0.791



Chapter 5

Conclusion

Our pipeline successfully localizes the legs of the subject and runs a trajectory optimization

module for accurate and optimized RGB-D scanning. This provides us with good RoIs on the

surface for US scanning. In the results section, we show that the use of color-based region

growing for clustering performs reasonably well in detecting the skin of the subject. Additionally,

our evaluation score comprehensively identifies good features in reconstructed point clouds while

penalizing bad ones in the optimization process. This helps our RGB-D trajectory optimization

module converge the fastest (corroborated by the ablation study). Finally, the RoI detected

traces the femoral vessels fairly well while producing good quality US scan images. We have

achieved near autonomy in ultrasound scanning using RGB-D sensing

Our pipeline is an important step in the complete automation of an RUS for scanning femoral

vessels. Our work ties external anatomy to internal scanning. To test the robustness and

generalization of our pipeline in real-world scenarios, live-pig experiments are planned in the

near future. We have optimized the height of the RGB-D sensor’s scanning trajectory but we

plan on optimizing sensor orientation in addition to height. This can provide a higher area

coverage of the subject’s skin. Currently, our pipeline generates a US RoI based on the external

surface and maps femoral vessels 85% of the time. To increase the visibility percentage of the

femoral vessels, we plan on incorporating internal anatomy to our pipeline.
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