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Abstract

Large Language Models (LLMs), trained on internet-
scaled data, have demonstrated comparable capabilities in
high-level reasoning, semantic understanding, and contex-
tual decision-making. In this project, we explore their use
as a planner for dynamic legged locomotion by introduc-
ing an interface that maps natural language commands to
delta-position commands. This paper focuses on the tem-
poral and spatial reasoning strengths of the LLMs to gen-
erate meaningful pose offsets to guide a quadruped to loco-
mote. The main objective of this project is to investigate
how well LLMs can generalize in generating these rela-
tive commands and identify scenarios where their perfor-
mance degrades. These insights would inform the develop-
ment of a more robust and scalable framework to enable
more complex behaviors for whole-body humanoid manip-
ulation, which potentially would require fine-tuning of the
LLM to better align with the task at hand. — Demo Video

1. Introduction

Natural language is one of the most intuitive forms of
communication that human beings have, which allows them
to convey ideas, emotions, and instructions to one another.
It also facilitates seamless contexts in various forms, like
conversations to complex technical discussions. Therefore,
there is a need for a framework that enables simple and
effective interaction between humans and robots, to en-
able more natural and flexible control over robotic systems
(cite). Recent advancements in Large Language Models
(LLMs) have unlocked a wide range of applications deemed
challenging to solve a decade ago. They are used for human
assistance and language understanding, such as question-
answering [14]. Recent works have also explored the use
of LLMs in robotic applications, such as using them for
robot control [3], scene reasoning [19], and long-horizon
task planning [5].

Though LLMs have proven to be successful in various
applications, it is still challenging for LLMs to compre-
hend low-level robotics commands such are motor torques,
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Figure 1. Illustration of our proposed system, where natural lan-
guage instructions are mapped to delta-position commands that
guide the robot’s locomotion.

target joint angles, and high-frequency control signals. In
this project, we investigate the use of delta-position com-
mands as a bridge between low-level control and natural
language instructions for dynamic legged robots in order to
overcome this difficulty. We provide an architecture where
LLMs produce a delta-pose command, which is then used
by the learned locomotion controller, as opposed to trans-
lating language to motor actions. This abstraction allows
LLMs to reason over commands that are grounded in time
and space without having to comprehend hardware-specific
actuation or operate at high control-loop frequency.

This problem remains unsolved primarily due to the dif-
ficulty of aligning the high-level semantic structure of lan-
guage with the continuous, low-level demands of robotic
control. Prior work has demonstrated some success using
discrete contact patterns [25] or pre-trained behavior prim-
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itives, but these approaches often lack the flexibility or ex-
pressiveness needed for whole-body control in dynamic en-
vironments.

The proposed approach leverages the reasoning capa-
bilities of Large Language Models (LLMs) while delegat-
ing fine-grained motor control to task-specific controllers
trained to interpret delta-position commands. We begin by
developing a delta-position-based hierarchical locomotion
controller for the Unitree Go2 robot. This controller exe-
cutes the desired behavior based on a target pose command
generated by the LLM. Specifically, we use a pretrained ve-
locity controller capable of tracking velocity and turn-rate
commands, which serves as the low-level policy. To bridge
natural language and control, we design a prompt template
that enables the LLM to generate delta-position outputs,
comprising target positions in x, y, and target heading by
leveraging its spatial and temporal reasoning abilities. The
main contributions of this project are:

* A language-conditioned control framework that uses
delta-position commands as an interpretable interface
between LLM outputs and robot execution.

* A hierarchical control pipeline that integrates an LLM
with a pretrained velocity-tracking controller on the
Unitree Go2 robot.

* A prompt engineering strategy for enabling LLMs to
reason over spatially grounded instructions and gener-
ate continuous motion goals.

* A set of experiments evaluating the feasibility of using
LLMs for quadruped locomotion, along with analysis
of failure cases to inform future fine-tuning and gener-
alization.

The rest of the paper is organized as follows: Section 2
discusses the relevant related works, Section 3 describes the
methodology of our approach, Section 4 presents the exper-
imental setup and the results, and finally Section 5 ends with
concluding remarks.

2. Related Work

Language to control robots: Recent advances in Large
Language Models (LLMs) have enabled new paradigms for
robot control that leverage the models’ capabilities in high-
level reasoning and natural language understanding. Au-
thors of [1] introduce a modular framework that presents a
modular system for executing language commands in real-
world manipulation tasks that combines value-based affor-
dance reasoning with LLMs. In this work, the instructions
are broken down into smaller objectives, and actions are
chosen according to their projected likelihood of achieve-
ment. [7] extends this work by incorporating sensor inputs,
thus enabling multi-modal scene-aware decision making.

RT-1[2] and RT-2 [3] introduce a transformer-based con-
trol architecture which are trained on large-scale robot data.
Thus allowing LLMs to directly interface with robot ob-
servation and output tokens for required actions. On the
other hand, [24] demonstrates the utility of LLMs in open-
world navigation by combining GPT-3 [8], CLIP [10], and
ViNG [23] to convert language into location-based naviga-
tion commands.

These systems demonstrate various contributions, in-
cluding the breakdown of control into low-level actuation
and high-level planning. This is done by integration of
multi-modal data (vision + language), and the use of pre-
trained LLMs for symbolic task reasoning. The majority
of the above-described methods are limited in their applica-
bility to dynamic, continuous domains such as legged loco-
motion because they either rely on discrete action spaces,
pre-trained affordance primitives, or symbolic planners.

Some works have explored direct language-conditioned
behaviors [15] introduce a concept of command interrup-
tions as a critical challenge in language-guided dynamic
locomotion and develop a learning-based method to detect
and mitigate harmful interruptions to enable robust control
policies. For quadruped locomotion, [25] presents a real-
time language-to-motion module that converts natural lan-
guage into continuous walking patterns.

Despite these developments, it is still difficult to get
LLMs to generate low-level or mid-level control signals
for dynamic robots. To address this, our work intro-
duces a continuous delta-position command interface
(Az, Ay, Ayaw) as a mid-level abstraction that connects
natural language with low-level velocity controllers. This
approach is inspired by [25], which introduces the idea of
using foot contact patterns as an LLM-compatible interface
for locomotion. We leverage the spatial and temporal
reasoning of the LLMs to offload low-level actuation to
a pre-trained controller. This design choice enables our
system for real-world deployment on dynamic legged
platforms and lays down path to extend it to humanoid
manipulation tasks.

Locomotion controllers for Legged robotics: Legged
robots have increasingly become popular across various ap-
plications such as payload transport, disaster response, agri-
culture, and construction [26]. However, legged locomotion
presents a complex control problem, requiring both preci-
sion and robustness to manage the nonlinear dynamics of
the system effectively [11].

Much of the existing research in legged locomotion has
focused on developing optimization-based control strate-
gies. Among these, Model Predictive Control (MPC) has
emerged as a leading approach due to its stable, safe, and
robust locomotion capabilities [29]. Recent works have
demonstrated dynamic and adaptive whole-body control for
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Figure 2. Overall system architecture.

quadrupeds that can effectively handle both system and en-
vironmental uncertainties [6, 20, 27]. Although MPC has
made significant progress in legged locomotion, it still faces
key limitations, such as sensitivity to model mismatch,
slow online optimization, and difficulty in managing high-
dimensional models.

On the other hand, Reinforcement Learning (RL) ap-
proaches have demonstrated impressive legged locomotion
capabilities across diverse, complex, and natural environ-
ments [4,13,18,28]. RL-based approaches do not require an
explicit system model. Instead, they learn control policies
in simulation by interacting with the environment to max-
imize a reward function that describes the locomotion task
objectives [16]. The resulting policies can directly map raw
robot observations to joint actions in a closed-loop manner
[12,17]. However, RL methods also come with their own set
of challenges, such as the simulation-to-reality (sim-to-real)
gap, high data sampling requirements during training [21],
and limited safety guarantees in the learned policies.

To address these challenges, we propose a hierarchical
control architecture that would generate intermediate target
velocities and turn rates to the pre-trained low-level policy.
Our work proposes a delta-position command as a mid-level
abstraction that generates commands relative to the robot’s
local frame, which are represented as (Ax, Ay, Ayaw)
goals to the robot.

3. Methodology

The goal of this work is to enable natural language-
driven control of a dynamic legged robot using delta-

position commands as an intermediate interface between
high-level reasoning and low-level execution. Our method-
ology is composed of three main components: (1) a pre-
trained velocity controller, (2) a delta-position interface
layer, and (3) language to delta-position.

3.1. Low-level locomotion policy

We formulate the low-level velocity controller for the
quadruped as an RL policy trained to track target ve-
locity commands. Specifically, we adopt an actor-critic
framework and train the policy using the Proximal Policy
Optimization (PPO) algorithm [22]. Both the actor and
critic networks are implemented as multi-layer perceptrons
(MLPs) with hidden layer sizes of [512, 256, 128]. The pol-
icy receives as input the current robot state and the target
velocity command, which includes desired linear velocities
in the x and y directions and angular velocity around the
z-axis. The robot state consists of base linear and angular
velocities, the projected gravity vector, joint positions, joint
velocities, and the previous action output by the policy. The
policy outputs the action in the form of delta joint positions.

To learn a stable and efficient locomotion, we adapt the
reward function from prior work on quadruped locomotion
[16]. The locomotion policy is controlled at 50 H z, and the
simulator is operated at 200 H z. Training is conducted in
simulation using Isaac Sim with 4096 parallel environments
for a total of 10,000 PPO iterations, corresponding to ap-
proximately 1 billion environment interactions. This policy
is then used as the pre-trained low-level velocity controller
in our setup, as shown in Figure 2.



3.2. Delta-Position Poilcy

We formulate the high-level controller as an RL policy
that maps a target delta pose to velocity commands for the
low-level controller to execute. This controller is trained
using the same actor-critic framework and PPO algorithm
as the low-level policy [22], but with smaller network ar-
chitectures. Both the actor and critic are implemented as
multi-layer perceptrons (MLPs) with hidden layer sizes of
[128, 64].

The policy receives as input the robot’s current state and
a delta pose command. The state includes the robot’s base
position and orientation in the world frame, base angular ve-
locity, and the gravity vector projected into the body frame.
The command specifies the desired relative displacement
and orientation change as (Az, Ay, Ayaw), which is sam-
pled uniformly within predefined bounds as shown in Equa-
tion 1. At each policy step, the remaining delta command
is updated based on the robot’s current position, enabling
progress tracking toward the goal.

Az ~U(=3.0,3.0)m
Ay ~U(-3.0,3.0)m (1)
Ayaw ~ U(—180°,180°)

The policy outputs target linear and angular velocities
in the body frame, which the pre-trained locomotion policy
then tracks. The reward function used to train this high-level
controller consists of two components: (i) task rewards that
encourage accurate tracking of the desired displacement and
heading, and (ii) regularization terms that penalize high ac-
tion rates and joint torques to discourage abrupt or unstable
motions.

This high-level policy runs at the same control frequency
as the low-level controller (50 Hz) and is trained in Isaac
Sim with 4096 parallel environments for 1,000 PPO iter-
ations, totaling approximately 30 million environment in-
teractions. Once trained, this policy acts as the interface
between the language model and the robot’s control stack,
converting natural language-derived goals into actionable
motion commands, as illustrated in Figure 2.

To improve generalization beyond the training distribu-
tion, we implement a simple truncation mechanism for out-
of-range commands. If the input delta pose exceeds the
training bounds, it is decomposed into a sequence of sub-
commands, each clipped to lie within the original training
range. For instance, a 6-meter forward command in Az is
split into two consecutive 3-meter steps, allowing the pol-
icy to iteratively complete the full motion while operating
within its learned limits.

3.3. Language to Delta-position commands

LLMs have the capability of learning spatial and behav-
ioral patterns from large-scale text data. But their effec-

tiveness diminishes when queried for robot control. They
require clear and well-structured prompts to guide them to
generate optimal outputs. Carefully engineered prompts can
be useful to unlock LLM’s reasoning abilities. Such an ex-
ample can be seen in Figure 3. In this work, we design
a prompt system that enables the LLM to map input natu-
ral language commands to output delta-position commands
suitable for the quadruped’s local position. The prompt is
composed of the following parts:

1. General Instruction Block: This block explains the
function of the LLM as a robot locomotion planner and
outlines the desired behavior, which is to provide rela-
tive delta-position commands (Az, Ay, Ayaw) based
on the robot’s instantaneous position and a natural lan-
guage instruction. Additionally, it ensures that all out-
puts are machine-readable and interpretable by enforc-
ing format restrictions and output consistency.

2. Delta Motion Definition Block: This block gives the
LLM the semantics of each output dimension in terms
of rotation and spatial displacement. The forward or
backward movement is represented by Az, lateral mo-
tion Ay, and final pose around the vertical axis by
Ayaw. All these outputs are given in the local body
frame of the robot, and the values are clearly con-
strained to reflect physically feasible constraints for
short-horizon legged motion.

3. Input and Output Definition Blocks: This block is
to specify a structured schema with three scalar val-
ves (Az, Ay, Ayaw) as outputs and inputs that con-
tain the robot’s global pose and a free-form command.

4. Example Block: This section provides few-shot
demonstrations of input-output pairs. This allows
to cover a range of movement commands, including
translations, rotations, and composite behaviors. De-
spite offering only a handful of examples, the LLM
generalizes effectively to unseen and imprecise com-
mands, demonstrating robust interpolation and extrap-
olation abilities.

4. Results

We evaluate the proposed language to the delta-position
framework across four task categories. Each task is de-
signed to asses the model’s ability to generalize to the natu-
ral language command into meaningful delta-positon com-
mands. For this project, we use GPT-40 as our primary in-
ference model. All the experiments were conducted in sim-
ulations using the Unitree Go2 quadruped robot. We utilize
the aforementioned delta-position hierarchical policy.



<General Instruction block>
You are an expert quadruped robot locomotion planner.

Your job is to predict the relative delta motion of the robot based on its current position and a

natural language command.

<Examples block>

Input:

Current position: (x: 2.0, y: 3.0, yaw: 90.0)
Instruction: sidestep right quickly

You will always output the relative motion as **delta x**, **delta y**, and **delta yaw**, in that

order.

You must ensure your response always follows the correct format, regardless of the input

phrasing.

<Delta motion definition block>

The robot's relative motion is defined as follows:

1. Ax is the forward-backward displacement in meters (positive is forward).
2. Ay is the lateral (sideways) displacement in meters (positive is left).

3. Ayaw is the final change in heading (in degrees, positive is counter-clockwise).

- All displacements are measured relative to the robot's current body frame.
- Only the final relative pose is output, not intermediate steps.
- For turning in place or pivoting actions, Ax and Ay may be 0.
- Typical value ranges:
-- Ax: [-3.0, 3.0] meters
-- Ay: [-3.0, 3.0] meters
-- Ayaw: [-180, 180] degrees

<Input format definition block>

- Each input will be in this format:

Current position: (x: <float>, y: <float>, yaw: <float>)
Instruction: <natural language command>

Where:

- x and y are the robot's global coordinates in meters

- yaw is the robot's current heading in degrees (0° means facing global +x)

- The instruction may describe movement goals, turns, or combination behaviors

<Output format definition block>

You must format your response exactly as follows:
- x: <float>

- y: <float>

- yaw: <float>

- All values must be floats (you may round to 2 decimal places).
- Use no units in the output, only numeric values.

Qutput:
x: 0.0
y:-1.0
yaw: 0.0

Input:
Current position: (x: -1.5, y: 0.0, yaw: 0.0)
Instruction: walk forward and turn left

Output:
x: 1.0

y: 0.0
yaw: 45.0

Input:
Current position: (x: 0.0, y: 0.0, yaw: 180.0)
Instruction: reverse slowly

Output:
x:-0.5
y: 0.0
yaw: 0.0

<User input block>

Generate a response based on the input provided below:
Input:

Current position: (x:-0.02 , y:-0.0 , yaw:-1.26 )
Instruction: walk ahead fast

Output:

Figure 3. Complete prompt structure used in all experiments. The final *User Input’ block is modified per command, while the rest remains

fixed.

4.1. Task Categories

We categorize our evaluation into the following four
groups:

4.1.1 Minimal Prompt Context

The LLM is provided only with the general instruction and
a natural language command, without delta-motion defini-
tions or examples. In this under-specified setting, GPT-40
frequently produced invalid or unstructured outputs, failing
to infer meaningful positional changes. This confirms that
prompt completeness is critical for structured motion gen-
eration.

4.1.2 Full Prompt with Context Blocks

This setting includes the full structured prompt, including
delta-motion semantics, input/output format, and example
blocks. Under this configuration, GPT-40 performed best,
generating correct (Ax, Ay, Ayaw) tuples for a wide range

of commands, including “sidestep right quickly” or “walk
forward and turn left.” These results validate the efficacy of
our prompt design.

4.1.3 Temporal Commands

In this setting, the instructions involved the duration and
speed for the agent to follow (e.g., “walk forward for 5
seconds at 2 m/s”). GPT-4o partially understands these
commands, but often struggles to compute precise displace-
ments (e.g., outputting Ax = 2.0 instead of 10.0). Despite
this, performance exceeds Task 1 and shows partial success
in temporal grounding.

4.1.4 Vague or Ambiguous Commands

Finally, we test vague phrases such as “move a bit” or “go
there quickly.” Outputs in this category are less reliable and
less consistent across trials, showing the LLM’s tendency
to hallucinate or over-interpret under-specified inputs. This



highlights the need for grounding mechanisms or language
fine-tuning for safety-critical deployment.

4.2. LLM Comparison and Onboard Performance

The original goal of this project was to use the quan-
tized FP16 version of the LLaMA 3.1-8B model [9] as the
primary inference model, which would run locally on the
robot’s NVIDIA Jetson Orin Nano computer. The core idea
was to fine-tune this model using supervised data gener-
ated from GPT-40 outputs. Which would enable a com-
pact, locally deployable LLM that could replicate GPT-40’s
instruction-following behavior without relying on external
inference.

To begin this process, we manually collected approx-
imately 100 high-quality instruction-response pairs by
querying GPT-4o in order to avoid the costs associated with
large-scale API usage. We performed a preliminary super-
vised fine-tuning run using this dataset on LLaMA 3.1-8B.
However, the limited size of the dataset proved insufficient
to meaningfully adapt the model, resulting in poor perfor-
mance compared to GPT-4o.

Due to the time constraints and the resource-intensive
nature of generating a sufficiently large and diverse dataset,
we were unable to complete the fine-tuning pipeline.
Hence, we reverted back to using GPT-40 as the primary
inference model during evaluation. Despite this, the sys-
tem architecture remains designed for onboard deployment,
and future work will focus on scaling up data generation
and completing the fine-tuning process to support complex
real-time tasks such as humanoid manipulation.

5. Conclusion

In this project, we propose the use of Large Language
Models (LLMs) to generate delta-position commands for
quadruped locomotion based on natural language input.
Our method leverages structured prompt design to enable
models like GPT-40 to reason about spatial and temporal
goals, providing a flexible and interpretable interface for
controlling legged robots.

While our original goal was to fine-tune a locally deploy-
able LLaMA 3.1-8B model using supervision from GPT-40
outputs, we were only able to test this approach on a small,
manually curated dataset. We were unable to report quanti-
tative metrics, as the plan relied on using GPT-40 as ground
truth for performance comparison. Despite this, our frame-
work lays the groundwork for future onboard deployment
and extension to more complex manipulation tasks using
language-driven control.
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