
Multiagent Resource Constrained Payload Transport
Ashutosh Gupta1, Jeremiah Goddard1, and Mohitvishnu Gadde1

Abstract—Multiagent payload transport requires significant
coordination, where each agent’s performance relies on accurate
observations and efficient decision-making. Full state observ-
ability and centralized control are computationally expensive
and impractical in real-world settings, limiting scalability. To
address these challenges, we propose a decentralized reinforce-
ment learning (RL) framework for multiagent payload transport,
where agents rely solely on local observations and decentralized
control without any inter-agent communication. We model the
task as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) and employ centralized training with de-
centralized execution (CTDE) to overcome resource constraints.
Our approach enables agents to implicitly coordinate, optimize
energy usage, and achieve scalable payload transport with a
variable number of agents. We evaluate our method in a
2D environment with transport tasks of increasing complexity.
Results demonstrate that our method scales from 2 to 50 agents
without retraining and achieves comparable performance to
baselines with access to global state information. These findings
highlight our approach’s robustness, scalability, and practicality
in resource-constrained and partially observable environments.

Index Terms—Multiagent transport, Reinforcement Learning,
Resource constraints.

I. INTRODUCTION

Payload transport is a fundamental task with diverse real-
world applications, including construction [1], agriculture [2],
search and rescue [3], and space exploration [4], [5]. To
address the problem of scalability and adaptivity to varying
payloads, collaborative multiagent transport systems have been
explored, where multiple agents must cooperate to move and
navigate the payload through complex environments [6], [7].
Decentralized systems are often preferred for scalability [8],
but they require efficient management of each agent’s available
resources, system observability and sensing, and communi-
cation with other agents [9]–[11]. Limited communication
and reliance on local sensing require each agent to adapt
independently to the environment while coordinating with
other agents. Designing robust systems that balance efficiency,
stability, and scalability under these constraints remains a
critical and open challenge in multiagent research.

Existing work on multiagent payload transport has focused
on transporting a rigid structure of the payload with limited
capability to handle more agents in the system [5], [12], [13].
These approaches often assume the presence of rigid, fixed-
constrained joints between the agents, limiting the flexibility
of the system to adapt to different payload sizes and shapes
[14], [15]. Additionally, some researchers have explored the
planning and coordination of non-connected multiple agents

1 Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon
State University, Corvallis, OR 97331, USA.
{guptaash, goddarje, gaddem}@oregonstate.edu

Fig. 1: An illustration of the multiagent payload transport
environment: Yellow circles represent the agents, which col-
laboratively align to push the payload (orange square) toward a
predefined goal location (green circle) while navigating around
obstacles and maintaining coordination.

for collaborative transport [7], [16], [17]; they typically rely
on assumptions of reliable centralized communication and
no constraints on available agent-based resources. These as-
sumptions reduce the practicality of such solutions in real-
world scenarios, where communication may be unreliable, and
agents operate with varying resource constraints. Currently,
no approach effectively addresses the problem of planning,
coordinating, and reconfiguring multiple agents for payload
transport while optimizing for resource, capacity, and com-
munication constraints. This gap highlights the need for more
robust, decentralized solutions to better accommodate real-
world applications’ complexities.

To address these challenges, we propose a decentral-
ized, end-to-end reinforcement learning (RL) framework for
collaborative multiagent payload transport under resource-
constrained, communication-free, and partially observable set-
tings. Our approach provides technical solutions for key
issues such as agent resource constraints and local system
observability and promotes inter-agent coordination. Each
agent is equipped with limited local sensing (e.g., lidar) and

access only to its position, velocity, and goal information.
It operates without global state knowledge or inter-agent
communication. To enable effective coordination, we design
an RL-based policy that leverages local sensory inputs and
self-state information to generate control actions for each
agent. Using an Independent Proximal Policy Optimization
(IPPO) framework with centralized training and decentralized
execution (CTDE), agents learn to collaboratively push the
payload, avoid obstacles, and maintain coordination. Unlike
prior methods, our approach scales efficiently with the number
of agents and adapts dynamically to payload variations.

The primary contributions of this work are as follows:
• A reinforcement learning framework for multiagent pay-

load transport that addresses constraints on agent re-
sources, limited system observability, and the absence of
central communication.

• A flexible policy design that adapts to varying payload
weights and sizes while scaling efficiently with the num-
ber of agents without requiring policy retraining.

• An efficient learning framework that enables agents to
develop robust control strategies deployable in real-world
scenarios under practical constraints such as partial ob-
servability, limited sensing, the absence of centralized
control, and no inter-agent communication.

The rest of the paper is organized as follows: section II
discusses related work and the limitations of existing meth-
ods. section III describes our RL-based methodology, includ-
ing network design, agent coordination, and the curriculum
learning process. section IV outlines the experimental setup,
benchmarks, and training details. section V presents our em-
pirical results, demonstrating the performance improvements
of our approach compared to various baselines, with access to
global state information. section VI summarizes the proposed
approach and discusses the future work.

II. BACKGROUND

This section provides an overview of essential topics rel-
evant to this work. We begin by introducing the framework
of Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) for modeling decision-making under
uncertainty. We then discuss the significance of multiagent
systems in the context of payload transportation. Next, we
examine the resource constraints that need to be addressed
while developing algorithms for the deployment of multiagent
systems in real-world scenarios. Finally, we explore the role of
reinforcement learning in enhancing coordination and learning
efficiency in multiagent systems.

A. Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs)

Various multiagent systems operate in environments where
they need to make decisions based on incomplete or uncertain
information. The Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs) is a framework that al-
lows cooperative behaviors within such systems to execute
described goals [18].

The Dec-POMDP is an extension of the standard Markov
decision process (MDP) that involves the coordination of
multiple agents making decentralized decisions based on their
local observations [19], [20]. Thus, agents only have partial
information about the global state, and no central decision-
maker provides directions for further actions. This framework
holds immense significance in multiagent systems because
it captures the essence of decentralized decision-making in
an environment where communication is severely limited or
expensive [21], [22].

In this work, we formulate the multiagent resource-
constrained payload transport as a Dec-POMDP, where
each agent independently learns a policy to contribute
towards achieving a shared transportation goal. For-
mally, the Dec-POMDP can be described by the tuple
(N,S,A,O, P,R,Ω, γ), where:

• N : Set of agents, with each agent i ∈ {1, 2, . . . , n}
having partial observability over the environment.

• S: Set of global states representing the positions of
agents, obstacles, and the payload within the environ-
ment.

• A: Set of joint actions, where a = (a1, a2, . . . , an)
includes individual continuous actions ai for each agent
i, representing directional forces applied in the x and y
dimensions to transport the payload.

• O: Set of observations for each agent, where oi ∈ O
represents the local observation available to agent i.
Observations include the agent’s position, velocity, lidar
readings (when enabled), relative positions to the payload
and goal, and information on nearby obstacles.

• P : Transition probability function P (s′|s, a), describing
the probability of moving from state s to state s′ given a
joint action a.

• R: Reward function R(s, a), providing a scalar reward
based on the success of the payload transport task.

• Ω: Observation function Ω(o|s, a), describing the proba-
bility of each agent receiving an observation o given the
state s and joint action a, reflecting the limited sensing
capabilities and field of view for each agent.

• γ: Discount factor γ ∈ [0, 1] determining the importance
of future rewards, incentivizing agents to reach the goal
as quickly and efficiently as possible.

B. Multiagent Systems for Payload Transportation

Efficient transportation of goods from one place to another
is crucial across various industries, such as manufacturing,
construction, logistics, and shipping. Traditional methods in-
volve human-operated machinery and physical labor to com-
plete such tasks. These approaches accomplish the task, but
they may not be ideal in all situations, particularly when
dealing with heavy and irregular payloads. To overcome these
challenges, cooperative systems present an effective alterna-
tive to the limitations mentioned earlier. There is extensive
literature on autonomous multiagent systems that collaborate
to achieve tasks for transporting payloads from one location
to another. [23]–[28]

This collaboration allows the division of labor within the
system to lift heavier payloads that are beyond the capabilities
of individual agents. Various research teams have demon-
strated successful implementation of such multiagent systems
on real robots to achieve cooperative payload transportation
from one place to the other [6], [14], [29].

C. Resource Constraints in Multiagent Systems

Deploying a multiagent system in real-world scenarios
comes with its own challenges. Since these cannot work indef-
initely, we need to consider some constraints while designing
algorithms to operate such systems [30], [31]. Some of these
constraints include:

• Battery life: Limited energy supply for individual agents
must be carefully considered when assigning tasks, as
it directly impacts the agents’ ability to complete their
missions.

• Payload capacity: Each agent in a multiagent system
has mechanical limitations that define its maximum load-
carrying capacity, which must be factored into task as-
signments.

• Computational resource: Each agent requires sufficient
computational resources to operate effectively, whether it
follows commands from a centralized control center or
operates autonomously in a decentralized manner.

Therefore, effective management of these constraints is crit-
ical for task completion in multiagent systems, as overloading
an individual agent can lead to mechanical failure or premature
battery depletion due to inefficient resource allocation. Thus,
resource-aware task allocation and planning are essential to
ensure the efficiency and reliability of such multiagent systems
[32].

D. Reinforcement Learning in Multiagent Systems

Reinforcement Learning (RL) is a learning paradigm where
an agent learns to make decisions through their interactions
in an environment to maximize cumulative rewards [33],
[34]. For multiagent systems, RL allows agents to learn opti-
mal behaviors amidst complex environments without explicit
programming [35]. Various approaches have shown that RL
enables each agent to learn its policy independently, treating
other agents as a part of the environment. In such setups, each
agent treats other agents as part of a dynamically changing
environment. These agents adapt by changing their actions in
response to both the physical environment and the evolving
behaviors of other agents. [36], [37] However, approaches
that account for the joint action space like those discussed
by Dingband Liu et. al [8], suffer from scalability problems
due to the exponential growth of the joint action space.

Centralized Training with Decentralized Execution (CTDE)
[38] is emerging as one of the potential methods to train multi-
agent systems, which are trained using centralized information
but execute the learned policies based on local observation
of individual agents. These approaches have demonstrated
promising results, exhibiting improved coordination and en-
hanced scalability during execution [39], [40].

Multiagent actor-critic methods, such as Proximal Policy
Optimization (PPO) [41], effectively stabilize learning in mul-
tiagent settings by having the actor use the value function
generated by the learned critic to guide policy updates, reduc-
ing the effects of non-stationarity [42], [43]. When combined
with a recurrent neural network (RNN), PPO can handle
partial observability by maintaining an internal state that
encodes historical information for decision-making [44], [45].
However, while PPO is highly efficient, applying it across
multiple agents remains computationally demanding.

III. METHODOLOGY

We formulate the multiagent resource-constrained payload
transport as a Decentralized Partially Observable MDP (Dec-
POMDP) [18]. We consider that each agent only has access
to the static global goal position, its own state, and sensor
measurements without access to the complete state information
of the system. With only partial observability, each agent
independently contributes to the payload transport task by
directly learning the low-level actions to push the package to
the desired goal. Our approach employs Independent Proximal
Policy Optimization (IPPO) [46] with Centralized Training and
Decentralized Execution (CTDE). Below, we expand on the
policy architecture, training environment, reward function, and
training details.

A. Policy Architecture

The policy and the critic networks are composed of MLPs
with hidden layer dimensions as {256, 256}, and the activation
function for all layers is tanh [47]. We use a shared Adam
optimizer [48] for both the policy and the critic. The policy
input includes the static global goal position pg = {xg, yg},
agent’s local observations include its current planar position
pa = {xa, ya}, current planar velocity va = {ẋa, ẏa}, and
lidar sensor measurements. Each agent is equipped with a
simulated lidar sensor with 72 rays, which provides a 5◦ reso-
lution and a maximum range of 2m to sense the environment.
The total input size to the policy network is 78. The policy
outputs a 2-dimensional directional force vector a = {fx, fy}
to control the agent’s movement in the x and y directions.

B. Episode Generation

Our approach employs a modified version of IPPO, which
generates training data from episodes involving three agents,
as described in Algorithm 1. During each episode, transitions
from all agents are aggregated into a shared replay buffer to
optimize a single actor and a centralized critic using the PPO
objective [41]. The centralized critic provides a global perspec-
tive to improve policy updates, accelerating convergence to an
optimal policy. Since all agents are homogeneous, we share
the actor and critic parameters across agents, enabling more
effective policy learning from collective experiences. After
training, the shared actor is deployed as the control policy
for all agents during execution, as outlined in Algorithm 2.

At the start of each training episode, three agents are
randomly spawned near the left end of the environment,

Fig. 2: [A] Illustrates the Partially Observable Payload Transport (PoPT) policy, a single controller that can be deployed to any
number of agents for pushing a payload to a goal position without requiring inter-agent communication. [B] The framework
of Independent Proximal Policy Optimization (IPPO) with Centralized Training and Decentralized Execution (CTDE) is used
for policy training.

while the goal location is randomized near the right end. The
package is initialized in the middle region of the environment
with a constant mass, size, and orientation throughout training.
To introduce variability, each agent’s pushing capacity is
randomized at the start of each episode, within the range of
capacity = [0.8, 1.2]. Each episode terminates after 500 time
steps or when the package reaches the goal location.

Algorithm 1 Training Phase: Partially observable Payload
Transport (PoPT) with CTDE and IPPO

Initialize: Shared actor-critic network parameters θ and ϕ
Input: Package mass and size, environment env, max.
agents nmax, number of episodes T , curriculum levels
for each iteration in total iterations do

Reset env and initialize agents and goal position
for each time step t = 1 to T do

for each agent i = 1 to n (in parallel) do
Sample action ati ∼ πθ(ai|oti) based on current

observation oti
Execute ati, applying a fixed proportion of ati as

force on the package
Observe reward rti and new observation ot+1

i

Store (oti, a
t
i, r

t
i , o

t+1
i) for training

end for
end for
Update θ and ϕ with IPPO using experience from all

agents
end for
return Trained policy πθ for deployment

C. Reward Design

The proposed reward function consists of four key compo-
nents:

1) Global Reward: A terminal reward given when the
package reaches the goal position.

Algorithm 2 Execution Phase: Rule-Based Heuristic Deploy-
ment of Multiagent System

Input: Package mass and size, environment env, maximum
number of available agents nmax

Initialize scenario:
Determine the optimal number of agents n ≤ nmax based
on package mass and size (rule-based heuristic)
Evenly space n agents on the leftmost portion of env
Randomly place obstacles in the middle region, ensuring
minimum spacing of 2× package size
Set the goal position within the rightmost portion of env
for each time step t do

for each agent i = 1 to n (in parallel) do
Execute action ati ∼ πθ(ai|oti) learned during train-

ing
end for
Observe environment state, rewards, and agent positions

end for

2) Goal Shaping Reward: A dense reward based on the
Euclidean distance moved by the package toward the
goal at each time step, encouraging continuous progress.

3) Package Shaping Reward: A dense reward based on
the Euclidean distance each agent moves toward the
package, promoting agent coordination to reach and
push the package.

4) Energy Penalty: A penalty computed as the sum of the
norm of the agent actions at each time step, encouraging
energy-efficient behavior and minimizing unnecessary
movement.

These components collectively guide the agents to push the
package efficiently while balancing energy consumption, coor-
dination, and task completion. Each reward component plays
a critical role in shaping agent behavior, encouraging efficient
movement, collaborative effort, and energy conservation. A
detailed description of all the reward components and the

corresponding equations for each reward term are provided
below:

rit = rglobal + rgoal shaping + ripackage shaping − renergy (1)

• rglobal Global reward:

rglobal = wg · 1on goal

– wg: Reward for reaching the goal wg = 100.
– 1on goal: Indicator function set to 1 when the package

reaches the goal.

• rgoal shaping Goal shaping reward:

rgoal shaping = rgoal shaping − (wgs · ∥pgoal − ppackage∥)

– wgs: Goal shaping reward weight wgs = 50.
– rgoal shaping: Goal shaping component from previous

time step.
– ||pgoal − ppackage||: Current Euclidean distance be-

tween the goal and the package.

• ripackage shaping Package shaping reward for each agent:

ripackage shaping = ripackage shaping−(wps·∥ppackage−pi
agent∥)

– wps: Package shaping reward weight wps = 20.
– ripackage shaping: Package shaping component for the i-

th agent from previous time step.
– ||ppackage − piagent||: Current Euclidean distance be-

tween the package and the i-th agent.

• renergy Energy penalty:

renergy = wenergy ·
a∑
i

 ∥actioni∥√
2 · (actionrange · capacityi)2


– wenergy: Energy penalty weight wenergy = 0.1
– Penalty is computed as the sum of normalized norm

of action for all agents.

D. Training Details

During training, we use a system with three agents, and
the package mass is set to ensure that at least three agents
are required to effectively push the package. A buffer of 100k
transitions is collected at each iteration, and optimization is
performed over 5 epochs. Training is run for a maximum
of 50 iterations to ensure sufficient policy convergence. All
training parameters are listed in Table I. Further details on
our approach’s experimental setup and validation, Partially Ob-
servable Payload Transport (PoPT), are provided in section IV.

IV. EXPERIMENT

We conduct three sets of experiments to evaluate our
proposed approach against baseline methods. The evaluation
focuses on three key aspects: (1) the scalability of our ap-
proach with varying numbers of agents, (2) the impact of
state space observability on transport task performance, and
(3) the contribution of each reward term in our formulation.
To assess scalability, we conduct trials with different agent
counts and pushing capacities, analyzing how our approach
adapts to larger teams of agents. We also examine learning
efficiency and convergence times when using only specific
components of the reward function. The following subsections
provide details on the training and evaluation environment, the
baselines used for observability experiments, and the reward
formulation ablations. In section V, we present the results for
each set of experiments, highlighting the performance of our
approach relative to the baselines.

Parameter Value
Learning Rate (Actor & Critic) 3e-4
PPO Clip Range 0.2
Number of Epochs 5
Mini-Batch Size 256
Discount Factor (Gamma) 0.99
GAE Lambda 0.9
Value Function Coefficient 0.5
Entropy Coefficient 1e-4
Max Grad Norm 1.0
Buffer Size 100000
Total iterations 50
Episode length 500
Number of agents in training 3

TABLE I: Training parameters

A. Payload Transportation Multiagent Domain

For our experiments, we utilize the Vectorized Multi-Agent
Simulator (VMAS) [49] due to its adaptability and resource
efficiency. The simulator is configured to create a 2D envi-
ronment where agents are tasked with pushing a package to a
predefined goal position, as illustrated in Figure 1.

The number of agents in each scenario is determined using
a heuristic policy that calculates the optimal number of agents
required based on the package’s mass and the agents’ pushing
capacity. At the start of each episode, agents are initialized
at random positions within the leftmost region of the environ-
ment, while the package is placed randomly in the middle, and
the goal is randomly positioned in the rightmost region. The
agent’s pushing power and spawn locations are randomized
for each episode to promote robustness and generalization.

This work focuses on developing an end-to-end control
policy for the agents. To facilitate this, a heuristic policy as de-
scribed in Algorithm 2 is implemented as a rule-based system
with sufficient information to select the required number of
agents. While this approach effectively supports the objectives
of this study, future work could explore more autonomous and

data-driven methods to dynamically determine the number of
agents.

B. Evaluating scalability

We evaluate the scalability of our proposed approach with
varying numbers of agents in the system. We use three agents
for training to learn individual behaviors required to push the
package towards the goal. Since our approach relies solely on
local agent observations, we design a policy trained with a
minimal number of agents to seamlessly scale to larger agent
teams without retraining. To evaluate this, we test the policy
with an unseen range of 2 to 50 agents during rollout. This
zero-shot generalization experiment aims to demonstrate the
scalability and robustness of our approach in handling variable
team sizes for the payload transport task.

C. Evaluating observability

We evaluate the impact of different state observability
configurations on the performance of the approach. To
benchmark our method, we define three baselines for this
set of experiments. Each baseline is trained using the same
reward function described in Equation 1. This evaluation
highlights the role of state observability in shaping the agent’s
behavior and task performance.

1) Full State Observability: In this configuration, each
agent has complete knowledge of the environment. In addition
to its own state and velocity, each agent has access to the
position and velocity of all the other agents and the static
global position of the goal. Agents also have continuous
access to the package state, which includes the package’s
relative position with respect to the goal and the agent, along
with the current package velocity. Unlike other configurations,
lidar measurements are excluded since the agents already
have access to ground-truth information, making lidar data
redundant.

This setup represents a fully observable environment
where no information is hidden from the agents. While
this configuration is theoretically optimal for agent
decision-making, it comes with significant drawbacks. Full
observability requires access to the complete environment
state, leading to an exponentially larger state space as
the number of agents increases. This results in higher
computational complexity, as the policy is trained on a
fixed observation size. Scaling to larger teams would require
padding the observations, leading to information loss and
inefficiencies. Consequently, separate policies must be trained
for different agent counts, limiting the scalability of the
approach. Policies trained for a specific number of agents
may not generalize effectively to scenarios with varying team
sizes.

2) Package State: In this configuration, each agent has
access to only its own state and velocity without knowledge
of the states of other agents. Additionally, each agent receives
the static global position of the goal and continuous access to

the ground-truth package state. The package state includes the
relative position of the package with respect to the goal and
the agent, along with the current package velocity. Similar to
the previous baseline, lidar measurements are excluded due
to redundancy, as agents already have access to complete
information about the package.

This configuration enables scalability with respect to the
number of agents since agents do not depend on the states of
other agents. However, its reliance on ground-truth package
states poses a significant challenge for real-world deployment,
where precise and continuous access to the package’s state
may not be feasible. This limitation would make it difficult
to generalize the approach to real-world environments with
limited sensing and partial observability.

3) No Goal pose: In this configuration, each agent’s ob-
servations include its own state and velocity, along with lidar
measurements, consistent with our proposed approach. How-
ever, the static global goal position is intentionally excluded
from the agent’s observations. In this environment, the lidar
sensor is only obstructed by the package and other agents,
meaning the agent cannot directly sense the goal position.

This setup is designed to evaluate the importance of goal
position information in our proposed method. We can assess
how well agents can coordinate and push the package without
explicit goal awareness by removing access to the goal. This
setup highlights the role of goal position information in
enabling effective coordination and goal-directed behavior.

D. Ablating reward shaping

We analyze the impact of different reward components
from our formulation by performing an ablation study to
demonstrate the contribution of each term to task learning.
To achieve this, we define three baselines that are compared
against our full method, which incorporates all four reward
components. Each baseline is trained using the observation
space defined by our approach and includes the energy penalty
term. The remaining three reward components are ablated in
different configurations to evaluate their individual impact on
learning performance. This analysis provides insight into the
role each reward term plays in shaping agent behavior [50]
and achieving efficient task completion.

1) Global: In this baseline, only the global reward and
energy penalty are utilized. The global reward is a sparse
signal awarded solely when the package successfully reaches
the goal. This configuration represents a minimal reward setup,
relying exclusively on final task completion to guide learning.
We hypothesize that the absence of intermediate feedback
during the episode hinders the agents’ ability to learn effective
behaviors, often necessitating extensive exploration to achieve
meaningful progress.

2) Goal shaping: In this baseline, the reward function
includes the global reward, energy penalty, and goal shaping
reward. The goal-shaping reward provides dense feedback at
every time step by rewarding agents based on the distance
the package moves toward the goal. Unlike the sparse global

Fig. 3: Snapshot of results demonstrating the deployment of the proposed PoPT policy, trained on only 3 agents, to an unseen
range of 2 − 50 agents during rollout. Since the method relies solely on local observations, it can be seamlessly deployed
across any number of agents. The results showcase up to 50 agents collaboratively pushing the payload toward a predefined
goal position.

reward, the goal-shaping reward offers continuous feedback
throughout the episode, enabling agents to learn more effi-
cient behaviors. We posit that this configuration helps agents
develop goal-directed behavior.

3) Package shaping: In this baseline, the reward func-
tion includes the global reward, energy penalty, and pack-
age shaping reward. The package shaping reward provides
dense feedback at every time step, encouraging each agent to
move toward the package. Unlike the global reward, which
is sparse, this shaping reward offers continuous feedback to
agents throughout the episode. We expect this configuration
to promote effective agent-to-package coordination.

V. RESULTS

This section presents the performance evaluation of the
proposed decentralized reinforcement learning approach for
multiagent payload transport (PoPT). The evaluation is con-
ducted in a 2D environment using the set of experiments
described above, highlighting the effectiveness of our approach
in terms of scalability, observability, and the impact of reward
components on task learning and agent coordination.

A. Scalability results

Figure 3 presents snapshots of our policy deployed with
varying numbers of agents in the system, showcasing its
scalability. We deploy the policy with up to 50 agents, demon-
strating their ability to push the package to the goal position
collaboratively. As the number of agents increases, the time
taken to complete the task decreases, but with diminishing
returns due to the fixed mass and dimensions of the package.

The agents exhibit emergent coordination behavior, implic-
itly learning to position themselves at optimal pushing points
around the package. With only 2 agents, the combined pushing
power is insufficient for direct movement, often resulting in
an L-shaped path to the goal. However, with 3 or more agents,
they naturally distribute along the package’s edges and push
it in a more direct, diagonal path toward the goal, signifi-
cantly improving task efficiency. This behavior highlights the
adaptability and scalability of our approach, which achieves
optimal coordination without requiring additional training as
the number of agents increases.

B. Observability results

Figure 5 illustrates the training curves for the observabil-
ity experiment, comparing the proposed method with the
three baseline approaches. The results demonstrate that our
method achieves performance comparable to the Full State
and Package State baselines, both of which have significantly
higher state space observability. In contrast, the No Goal Pose
baseline fails to achieve the task, as reflected by the low
rewards and flat training curve. Figure 4 provides snapshots
of agent behavior during deployment for each of the four
methods, highlighting differences in coordination and task
execution.

The full state baseline grants each agent access to the
complete state space, including the position and velocity of all
agents as well as the package state. This extensive information
enables agents to complete the task with ease. However, this
method suffers from significant scalability challenges. As the

Fig. 4: Snapshot results of baseline deployments evaluating performance under different state observability conditions: Full
state: Trained on 3 agents with access to complete state information, achieving the task but limited to 3-agent deployment due
to the expanding state space. Package state: Accesses the continuous ground-truth state of the package, enabling successful task
completion with varying agent counts. PoPT (ours): Relies solely on local observations, achieving comparable performance
to baselines with much better state information (full state and package state). No Goal pose: Lacks access to the global goal
position, managing to push the payload but struggling to locate the goal precisely.

Fig. 5: Training curves of various observability configurations.

number of agents increases, the input size to the policy grows
exponentially, increasing computational complexity. Addition-
ally, since the policy is trained on a fixed number of agents (3
in this case), it is unable to generalize to varying numbers
of agents. Deploying this policy on a different number of
agents requires retraining from scratch, thereby compromising
scalability.

The package state baseline achieves task completion com-
parable to the Full State baseline but with better scalability.
This is achieved as each agent has access to the global state
of the package, including its relative position and velocity
to the package. However, agents do not have access to the
states of other agents. While this approach scales to larger
teams of agents, its reliance on the package state presents
a major limitation for real-world deployment. Accessing the
global package state in physical environments requires mo-
tion capture systems or external tracking setups [7], which
are expensive, labor-intensive, and impractical for large-scale
deployment.

The no goal pose baseline, the agents lack access to the
static global goal position, relying solely on local state and

lidar measurements. Without access to goal position infor-
mation, agents exhibit poor coordination, as reflected by the
low reward observed in Figure 5. Agents tend to approach
the package and push it in random directions, relying on
exploration to locate the goal. This limitation is also due to
the lidar sensors’ inability to detect the goal. Thus, leading to
inefficient behavior; which highlights the importance of goal
position information for effective planning and execution. We
note that in real-world applications, the global goal position
can be defined by the user or inferred from a high-level planner
with access to an environment map, making it a practical
assumption for real-world deployment.

Finally, our method with the proposed observation space
achieves task success comparable to the Full State and Package
State baselines but with significantly fewer assumptions about
state observability. Here, each agent relies only on its local
state, lidar measurements, and static goal position. Agents in-
dependently learn to approach the package and push it toward
the goal, exhibiting emergent coordination. This configuration
avoids dependence on ground-truth package states and agent-
to-agent state sharing, making it more scalable and realistic
for real-world deployment. Unlike the Full State baseline, our
method generalizes to varying numbers of agents, enabling
deployment without retraining. This scalability is achieved
through the use of decentralized execution, where each agent
operates using its own local observation.

C. Reward ablation results

Figure 7 shows the training curves for the ablation study
on reward components, comparing the performance of our
method with all four reward components against baselines with
ablated reward terms. The results show that only our method
successfully learns the task, while the other baselines struggle
to learn meaningful behavior. The learned behaviors for each
method are visualized in Figure 6, which shows snapshots
from the deployment of all four methods.

Fig. 6: Snapshot results of baseline deployments to ablate the reward components. Global: Utilizes only the sparse global
reward and energy penalty. This baseline fails to achieve the task as the sparse reward provides insufficient feedback for the
policy to learn meaningful behavior. Goal shaping: Incorporates goal-shaping dense rewards, global reward, and energy penalty.
This baseline fails, as agents receive no feedback until they accidentally move the package, requiring extensive exploration
to learn effective behaviors. Package shaping: Uses package-shaping dense rewards, global reward, and energy penalty. This
baseline achieves partial success, as agents quickly learn to reach the package but continue to push the package randomly due
to a lack of intermediate incentive to reach the goal location. PoPT (ours): Combines all four reward components, enabling
the policy to achieve the task optimally, demonstrating the effectiveness of the proposed reward function.

Fig. 7: Training curves for different reward configurations used
in the reward ablation study.

The Global Reward baseline uses only the sparse global
reward, provided when the package reaches the goal, along
with the energy penalty. The extreme sparsity of this reward
makes it difficult for the policy to explore and learn effective
behaviors. Due to the constant energy penalty, agents learn
to minimize energy consumption by remaining stationary
throughout the episode. This demonstrates the need for dense
feedback during the episode to incentivize movement and
exploration. Without such feedback, the policy fails to learn
any useful behavior.

The Goal-Shaping baseline introduces a denser feedback
signal, rewarding agents for moving the package closer to the
goal at every time step. While this approach offers more fre-
quent feedback than the sparse global reward, it still struggles
with exploration. The policy receives no reward until an agent
accidentally makes contact with the package and moves it,
leading to a similar exploration issue as the global reward
baseline. As a result, the agents learn to remain stationary

to avoid energy penalties. This highlights the need for an
additional dense component to encourage agents to approach
the package before attempting to push it.

The Package-Shaping baseline incorporates a dense reward
encouraging agents to approach the package. This additional
reward signal addresses the exploration issue seen in previous
baselines, as agents now receive continuous feedback when
moving toward the package. As a result, the policy learns to
approach the package more effectively and initiate pushing
behavior. However, without the goal shaping reward, the
agents have no dense feedback after reaching the package.
Consequently, the agents push the package toward the general
goal region but resort to random movements in an attempt
to “stumble” upon the goal. This behavior demonstrates the
necessity of both goal-shaping and package-shaping rewards
to achieve optimal behavior, as one reward alone is insufficient
to guide the policy through both stages of the task.

Our proposed method (PoPT) incorporates all four reward
components, providing dense feedback at every stage of the
task. The package-shaping reward encourages agents to ap-
proach the package, while the goal-shaping reward guides
them to push it toward the goal. The global reward reinforces
task completion, and the energy penalty promotes efficient
behavior. With such dense feedback present throughout the
episode, the policy quickly converges to the desired behavior,
with agents efficiently coordinating to approach and push
the package directly to the goal. The training curve for this
method shows the fastest convergence and the highest overall
performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of multiagent
resource-constrained payload transport by proposing a de-
centralized end-to-end reinforcement learning (RL) approach.

Unlike previous methods that rely on centralized control, ex-
tensive communication, and enhanced state observability, our
approach leverages only local agent observations, decentral-
ized control, and no inter-agent communication. This design
enables a scalable solution for payload transport, allowing
agents to implicitly learn coordination and optimize system-
wide energy consumption under resource constraints.

Despite the promising results, our proposed method has
certain limitations. We employed a simple rule-based heuristic
policy to determine the number of agents required for each
task. While sufficient for this study, this heuristic policy was
not our research’s primary focus. Additionally, our experi-
ments were conducted in a 2D simulation environment with
simplified physics, which does not fully capture the complexity
of real-world interactions. The package properties, such as
shape, dimensions, and mass, were kept constant throughout
training, limiting the generalization of the learned policy
to more diverse payload configurations. Finally, the training
environment did not account for obstacles, which is critical
for real-world tasks as agents must navigate environments
with dynamic and static obstacles to ensure efficient payload
delivery.

As part of future work, we aim to address these limitations
and further extend the proposed method. First, the heuristic
policy for agent selection could be replaced with a more
autonomous and data-driven approach that selects the optimal
number of agents based on dynamic environmental factors,
such as package mass, size, and agent capacity. Additionally,
we plan to use higher-fidelity simulators with more realistic
physics to better capture the complexities of real-world interac-
tions. To improve generalization, we intend to train the policy
on a broader range of package properties, including diverse
shapes, sizes, and masses. We also plan to introduce obstacles
into the training environment, allowing agents to learn to
navigate around them while minimizing energy consumption.
Lastly, to facilitate real-world deployment, our method could
be extended to incorporate robot-specific dynamics. This could
be achieved through hierarchical control, where the learned
policy guides a low-level robot controller, or through end-to-
end training, where the policy directly controls the robot’s
actions. These enhancements would make our method more
robust, scalable, and suitable for deployment in real-world,
multi-robot payload transport scenarios.

REFERENCES

[1] S. A. Prieto, N. Giakoumidis, and B. Garcı́a de Soto, “Multiagent robotic
systems and exploration algorithms: Applications for data collection in
construction sites,” Journal of Field Robotics, vol. 41, no. 4, pp. 1187–
1203, 2024.

[2] K. Ankit, S. N. Kolathaya, and D. Ghose, “Multi-agent collaborative
framework for automated agriculture,” in 2021 15th International Con-
ference on Advanced Computing and Applications (ACOMP), pp. 30–37,
IEEE, 2021.

[3] N. Mohanty, M. S. Gadde, S. Sundaram, N. Sundararajan, and P. Sujit,
“Context-aware deep q-network for decentralized cooperative reconnais-
sance by a robotic swarm,” arXiv preprint arXiv:2001.11710, 2020.

[4] L. Zhang, H. Xiong, O. Ma, and Z. Wang, “Multi-robot cooperative
object transportation using decentralized deep reinforcement learning,”
arXiv preprint arXiv:2007.09243, 2020.

[5] G. Eoh and T.-H. Park, “Cooperative Object Transportation Using
Curriculum-Based Deep Reinforcement Learning,” Sensors, vol. 21,
p. 4780, Jan. 2021. Number: 14 Publisher: Multidisciplinary Digital
Publishing Institute.

[6] B. Pandit, A. Gupta, M. S. Gadde, A. Johnson, A. K. Shrestha, H. Duan,
J. Dao, and A. Fern, “Learning Decentralized Multi-Biped Control for
Payload Transport,” June 2024. arXiv:2406.17279.

[7] Y. Feng, C. Hong, Y. Niu, S. Liu, Y. Yang, W. Yu, T. Zhang, J. Tan, and
D. Zhao, “Learning Multi-Agent Loco-Manipulation for Long-Horizon
Quadrupedal Pushing,” Nov. 2024. arXiv:2411.07104.

[8] D. Liu, F. Ren, J. Yan, G. Su, W. Gu, and S. Kato, “Scaling Up Multi-
Agent Reinforcement Learning: An Extensive Survey on Scalability
Issues,” IEEE Access, vol. 12, pp. 94610–94631, 2024. Conference
Name: IEEE Access.

[9] P. Agrawal, P. Varakantham, and W. Yeoh, “Scalable greedy algorithms
for task/resource constrained multi-agent stochastic planning,” in Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, (New York, New York, USA), pp. 10–16, AAAI
Press, July 2016.

[10] F. d. Nijs, E. Walraven, M. D. Weerdt, and M. Spaan, “Constrained
Multiagent Markov Decision Processes: a Taxonomy of Problems
and Algorithms,” Journal of Artificial Intelligence Research, vol. 70,
pp. 955–1001, Mar. 2021.

[11] J. Cui, Y. Liu, and A. Nallanathan, “Multi-Agent Reinforcement
Learning-Based Resource Allocation for UAV Networks,” IEEE Trans-
actions on Wireless Communications, vol. 19, pp. 729–743, Feb. 2020.

[12] J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames, and K. A. Hamed,
“Layered Control for Cooperative Locomotion of Two Quadrupedal
Robots: Centralized and Distributed Approaches,” IEEE Transactions
on Robotics, vol. 39, pp. 4728–4748, Dec. 2023. Conference Name:
IEEE Transactions on Robotics.

[13] M. L. Elwin, B. Strong, R. A. Freeman, and K. M. Lynch, “Human-
Multirobot Collaborative Mobile Manipulation: the Omnid Mocobots,”
June 2022.

[14] Q. Liu, Z. Nie, Z. Gong, and X.-J. Liu, “An Omnidirectional Transporta-
tion System With High Terrain Adaptability and Flexible Configurations
Using Multiple Nonholonomic Mobile Robots,” IEEE Robotics and
Automation Letters, vol. 8, pp. 6060–6067, Sept. 2023. Conference
Name: IEEE Robotics and Automation Letters.

[15] J. Kim, J. Lee, and A. D. Ames, “Safety-Critical Coordination for
Cooperative Legged Locomotion via Control Barrier Functions,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2368–2375, Oct. 2023. ISSN: 2153-0866.

[16] L. Pei, J. Lin, Z. Han, L. Quan, Y. Cao, C. Xu, and F. Gao, “Collabo-
rative Planning for Catching and Transporting Objects in Unstructured
Environments,” IEEE Robotics and Automation Letters, vol. 9, pp. 1098–
1105, Feb. 2024. Conference Name: IEEE Robotics and Automation
Letters.

[17] J. Horyna, T. Baca, and M. Saska, “Autonomous Collaborative Transport
of a Beam-Type Payload by a Pair of Multi-rotor Helicopters,” in
2021 International Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1139–1147, June 2021. ISSN: 2575-7296.

[18] F. A. Oliehoek, “Decentralized pomdps,” in Reinforcement learning:
state-of-the-art, pp. 471–503, Springer, 2012.

[19] C. Amato, G. Chowdhary, and A. Geramifard, “Decentralized Control
of Partially Observable Markov Decision Processes,”

[20] D. S. Bernstein, S. Zilberstein, and N. Immerman, “The Complexity
of Decentralized Control of Markov Decision Processes,” Jan. 2013.
arXiv:1301.3836.

[21] F. S. Melo, M. T. J. Spaan, and S. J. Witwicki, “QueryPOMDP: POMDP-
Based Communication in Multiagent Systems,” in Multi-Agent Systems
(M. Cossentino, M. Kaisers, K. Tuyls, and G. Weiss, eds.), (Berlin,
Heidelberg), pp. 189–204, Springer, 2012.

[22] F. A. Oliehoek, M. T. Spaan, N. Vlassis, et al., “Dec-pomdps with de-
layed communication,” in The 2nd Workshop on Multi-agent Sequential
Decision-Making in Uncertain Domains, Citeseer, 2007.

[23] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem,”

[24] Y. Sirineni, P. Verma, and K. Karlapalem, “Traffic Management Strate-
gies for Multi-Robotic Rigid Payload Transport Systems: Extended
Abstract,” in 2019 International Symposium on Multi-Robot and Multi-
Agent Systems (MRS), pp. 225–227, Aug. 2019.

[25] H. Rastgoftar, J.-B. Jeannin, and E. Atkins, “Formal Specification
of Continuum Deformation Coordination,” in 2019 American Control
Conference (ACC), pp. 3358–3363, July 2019. ISSN: 2378-5861.

[26] H. Rastgoftar and E. M. Atkins, “Cooperative aerial lift and manipulation
(CALM),” Aerospace Science and Technology, vol. 82-83, pp. 105–118,
Nov. 2018.

[27] H. Rastgoftar and E. M. Atkins, “Continuum Deformation of a Multiple
Quadcopter Payload Delivery Team without Inter-Agent Communica-
tion,” in 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 539–548, June 2018. ISSN: 2575-7296.

[28] H. Rastgoftar and E. M. Atkins, “Cooperative Aerial Payload Transport
Guided by an In Situ Human Supervisor,” IEEE Transactions on Control
Systems Technology, vol. 27, pp. 1452–1467, July 2019. Conference
Name: IEEE Transactions on Control Systems Technology.

[29] H. Zhu, S. Yang, W. Wang, X. He, and N. Ding, “Cooperative trans-
portation of tether-suspended payload via quadruped robots based on
deep reinforcement learning,” in 2023 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pp. 1–6, Dec. 2023.

[30] P. Pezeshkpour, E. Kandogan, N. Bhutani, S. Rahman, T. Mitchell,
and E. Hruschka, “Reasoning Capacity in Multi-Agent Systems:
Limitations, Challenges and Human-Centered Solutions,” Feb. 2024.
arXiv:2402.01108.

[31] C. Tong, A. Harwood, M. A. Rodriguez, and R. O. Sinnott, “An Energy-
aware and Fault-tolerant Deep Reinforcement Learning based approach
for Multi-agent Patrolling Problems,” June 2023. arXiv:2212.08230.

[32] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, pp. 1495–1512, Oct. 2013. Publisher: SAGE Publi-
cations Ltd STM.

[33] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, May 1996.

[34] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, pp. 26–38, Nov. 2017. Conference Name: IEEE
Signal Processing Magazine.

[35] K. Zhang, Z. Yang, and T. Başar, “Multi-Agent Reinforcement Learning:
A Selective Overview of Theories and Algorithms,” in Handbook of
Reinforcement Learning and Control (K. G. Vamvoudakis, Y. Wan,
F. L. Lewis, and D. Cansever, eds.), pp. 321–384, Cham: Springer
International Publishing, 2021.

[36] L. A. Birnbaum, Machine Learning Proceedings 1993: Proceedings of
the Tenth International Conference on Machine Learning, University of
Massachusetts, Amherst, June 27-29, 1993. Morgan Kaufmann, May
2014. Google-Books-ID: TrqjBQAAQBAJ.

[37] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Coopera-
tive Multi-Agent Planning: A Survey,” ACM Comput. Surv., vol. 50,
pp. 84:1–84:32, Nov. 2017.

[38] Y. Zhou, S. Liu, Y. Qing, K. Chen, T. Zheng, Y. Huang, J. Song, and
M. Song, “Is Centralized Training with Decentralized Execution Frame-
work Centralized Enough for MARL?,” May 2023. arXiv:2305.17352
[cs].

[39] H.-C. Chen, S.-A. Li, T.-H. Chang, H.-M. Feng, and Y.-C. Chen, “Hy-
brid Centralized Training and Decentralized Execution Reinforcement
Learning in Multi-Agent Path-Finding Simulations,” Applied Sciences,
vol. 14, p. 3960, Jan. 2024. Number: 10 Publisher: Multidisciplinary
Digital Publishing Institute.

[40] T. Ikeda and T. Shibuya, “Centralized Training with Decentralized
Execution Reinforcement Learning for Cooperative Multi-agent Systems
with Communication Delay,” in 2022 61st Annual Conference of the
Society of Instrument and Control Engineers (SICE), pp. 135–140, Sept.
2022.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal Policy Optimization Algorithms,” Aug. 2017. arXiv:1707.06347.

[42] S. Iqbal and F. Sha, “Actor-Attention-Critic for Multi-Agent Reinforce-
ment Learning,” May 2019. arXiv:1810.02912.

[43] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, (Red Hook, NY, USA), pp. 6382–6393,
Curran Associates Inc., Dec. 2017.

[44] D. Shi, C. Zhao, Y. Wang, H. Yang, G. Wang, H. Jiang, C. Xue, S. Yang,
and Y. Zhang, “Multi actor hierarchical attention critic with RNN-based
feature extraction,” Neurocomputing, vol. 471, pp. 79–93, Jan. 2022.

[45] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments,”
Mar. 2020. arXiv:1706.02275 [cs].

[46] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The
Surprising Effectiveness of PPO in Cooperative Multi-Agent Games,”
Advances in Neural Information Processing Systems, vol. 35, pp. 24611–
24624, Dec. 2022.

[47] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation Functions in
Deep Learning: A Comprehensive Survey and Benchmark,” June 2022.
arXiv:2109.14545 [cs].

[48] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Jan. 2017. arXiv:1412.6980 [cs].

[49] M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok, “Vmas: A
vectorized multi-agent simulator for collective robot learning,” The 16th
International Symposium on Distributed Autonomous Robotic Systems,
2022.

[50] A. Eck, L.-K. Soh, S. Devlin, and D. Kudenko, “Potential-based reward
shaping for finite horizon online pomdp planning,” Autonomous Agents
and Multi-Agent Systems, vol. 30, pp. 403–445, 2016.

	Introduction
	Background
	Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs)
	Multiagent Systems for Payload Transportation
	Resource Constraints in Multiagent Systems
	Reinforcement Learning in Multiagent Systems

	Methodology
	Policy Architecture
	Episode Generation
	Reward Design
	Training Details

	Experiment
	Payload Transportation Multiagent Domain
	Evaluating scalability
	Evaluating observability
	Full State Observability
	Package State
	No Goal pose

	Ablating reward shaping
	Global
	Goal shaping
	Package shaping

	Results
	Scalability results
	Observability results
	Reward ablation results

	Conclusion and Future Work
	References

