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Abstract— In a structural collapse, debris piles up in a chaotic
and unstable manner, creating pockets and void spaces that are
difficult to see or access. Often, these regions have the highest
chances of concealing survivors and identifying such regions
can increase the success of a search and rescue (SAR) operation
while ensuring the safety of both survivors and rescue teams.
In this paper, we present an approach for ex post facto void
detection in rubble piles by using registered 3D point clouds
reconstructed from aerial images captured at multiple times on
the scene. We perform a temporal layering of these point clouds
to capture the dynamic surface of the rubble pile from multiple
days of the SAR operation and analyze this 3D structure to
detect candidate regions corresponding to void spaces. The
layering is achieved by a parallel 3D point cloud reconstruction
of the scene using the COLMAP Structure from Motion
pipeline. The void detection is achieved by applying multiple
point filtering criteria in thin segments of the 3D point clouds
of the rubble. We test our approach on aerial images collected
from the Surfside Structural Collapse at Miami in June 2021.
Our method achieves an improvement in registration compared
to the use of standard point cloud registration methods on
individual 3D reconstructions. Through our method, we see
translation errors reduce by 82%. Additionally, our method
detects 9 out of 10 void spaces that were observed by experts
in the rubble.

I. INTRODUCTION

Structural collapses lead to substantial loss of life and
therefore, improving the response to structural collapse
disasters is a major focus in search and rescue robotics
research [1] [2]. Of the 98 fatalities in the Surfside Structural
Collapse, 9 were deemed to not be caused by crush injuries,
indicating that 9 victims might have been rescued if they
had been quickly found and extricated from the rubble [3],
[4]. For rescue workers, locating void spaces is paramount
as these regions have the highest chance of containing
trapped survivors. But identifying voids can be challenging
as they are small, irregularly shaped, and obscured by rubble
[5]. Aerial imagery collected from the disaster site with
uncrewed aerial systems (UASs) provides a broad view of the
disaster scene which is helpful locating multiple void regions
at once. 3D reconstructions generated from aerial images
capture essential information that can be used to identify
and characterize void spaces [6] and analyze terrain mobility
for robots. While building 3D reconstructions in sufficient
resolution is not real time yet, data analyzed through this
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Fig. 1. Key contributions presented in our work - 1) The use of UAS
images (Seen in a.) for generating a layered 3D reconstruction (Seen in
b.) of the collapse scene. 2) Voids annotated by experts (Seen in c.) being
identified by our method (Seen in d.).

method can help predict the occurrence, location, appearance
and likelihood of voids in future collapses.

To this end, we use 3D point cloud reconstructions of
a disaster scene for void detection. A single 3D point
cloud, generated from aerial images through Structure from
Motion (SfM), is sufficient to characterize the rubble surface.
However, for analyzing the internal structure of voids, it is
essential to study the variations in geometry of the rubble as
it is cleared over time. This warrants the use of multiple 3D
reconstructions.

In this paper, we present a novel approach for semi-
automated ex post facto detection of voids in the rubble pile
of the Surfside Structural Collapse at Miami. Our pipeline
utilizes the COLMAP [7] SfM workflow to reconstruct point
clouds representing the dynamic SAR scene at different
times. This reconstruction is done in parallel for images
from multiple days in a single coordinate frame, resulting
in registered point clouds. This provides us with lower
translation errors as compared to using standard point cloud
registration methods. We use these stacked point clouds to
determine regions that have changed over time. These regions
are processed for detecting shape and color priors that we
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associate with void spaces. The layers in the stack helps us
assess the internal dimensions of detected voids. The data
we process and the outcomes from our contributions are
presented in Fig 1.

Our method can be applied to similar previous data
or data collected in the future to find regions presenting
characteristics of void spaces. A collection of such regions
could one day help build learning-based predictive systems
for such disasters.

The rest of the paper is organized into the following
sections - Section II discusses related work in the areas
of UAS imagery, SfM for SAR operations, point cloud
registration and void detection. Section III discusses our
data collection and processing, followed by our methods in
Section IV and results in V. Finally, we present conclusions,
discussion and future work in Sections VI and VII.

II. RELATED WORK

Aerial imagery, either from satellite cameras or through
UAS flights on-site, can be used to assess damages to
buildings after disasters [8]. Images captured from UASs are
increasingly being leveraged for search and rescue operations
like 3D reconstructions of buildings at disaster sites post
earthquakes [9], floods [10], and fires [11], find traversable
paths for robots [12], and perform surveillance of constantly
evolving situations [13]. Temporal data capturing the evo-
lution of the surface of rubble can help in quantifying the
volumetric changes occurring during the clearing at a dis-
aster site. Point-based monitoring techniques together with
aerial photogrammetric surveys, are established techniques
to derive surface displacements [14]. Registration of multi-
temporal 3D surfaces is also used for quantifying changes in
the natural environment [15]. However, a layering approach
to rubble analysis is novel and our team is the first to apply
this to a structural collapse.

3D point cloud reconstructions from a series of 2D images
can easily be achieved with SfM, a feature-based 3D scene
reconstruction method from multi-view perception. It is a
standard technique which uses 2D images to estimate the 3D
structure of a scene and is available for use through multiple
open-source and commercial software. While most studies
conducting SfM on disaster data have used commercial
photogrammetry software, a few recent studies [16] [17]
show the use of open source software such as COLMAP.
[16] proposes a new solution to autonomously map building
damages with a commercial UAV in near real-time. [17]
develops a COLMAP-based 3D reconstruction approach with
a team of autonomous small UASs using a distributed
behavior model. [18] is a comprehensive study outlining the
performance of multiple open source and commercial SfM
software on reconstructing 3D point clouds for search and
rescue data. It shows that COLMAP is the fastest when it
comes to performing feature matching and it generates high
fidelity reconstructions with low errors. To the best of our
knowledge, we are the first to apply COLMAP to search and
rescue data for generating layered, registered reconstructions
from multiple days.

While individual reconstructions from the scene done on
images from different days can be registered using standard
point cloud registration methods such as Iterative Closest
Point (ICP) [19], Coherent Point Drift (CPD) [20] , and
PointNetLK [21], these methods struggle to handle data
from dynamic scenes. [22] tests multiple variants of ICP
and outlines some of the challenges that cannot be handled
by any of the variants. CPD is susceptible to noise and
discontinuities [23] and PointNetLK has to be trained on
search and rescue point cloud datasets to learn to handle
changes in geometry [24].

There are several methods for void detection in point
clouds. [25] presents a solution that has the user manually
detect point cloud voids, and is then able to fill these voids in
geometrically complex areas. This approach however cannot
process both smooth and sharp (or low and high frequency
geometry) voids at the same time. Other methods create
polygon meshes from input point clouds using the Delaunay
Triangulation algorithm, and then either perform a set of
angle checks in order to determine which vertices are on
the boundary of a void [26], or conduct a data search
on the mesh to determine which vertices are present only
in a single polygon, and thus lie on the void boundary
[27]. [28] employs Ball Pivoting mesh generation to improve
void detection. While these methods have shown results in
automatically detecting holes in 3D point clouds, they do not
perform well on highly unstructured data, and point clouds
that are missing sections, such as that of a rubble pile. The
approach presented in this work uses knowledge of geometric
priors corresponding to voids to detect candidate regions and
makes certain heuristic choices.

III. DATA

The data used in this work was collected by a quadrotor
UAS (DJI Mavic 2 Pro) flown over the Surfside disaster site
in a grid-like flight pattern over multiple days of the SAR
operation. Aerial top-down and oblique RGB and thermal
images were collected during the flights. GPS locations were
not captured and therefore, camera poses had to be estimated
in flight-specific coordinate frames.

We use images captured over four days June 27 - June 30,
2021, from one mapping flight at roughly the same time each
day: June 27 (Day 1), 13:30, June 28 (Day 2), 13:30, June
29 (Day 3), 13:00, and June 30 (Day 4), 11:00 local time.
Each flight captured approximately 350 images of resolution
5472 x 3648 pixels, roughly 75% of which had the collapse
rubble and standing portion of the building. These four days
were chosen because they capture the scene when majority
the large debris on the top of the rubble were cleared. It also
has limited human activity on the rubble. The flight altitude
during these days was at an average ∼ 84 m.

IV. METHODS

Our pipeline begins with a reconstruction of registered
point clouds followed by point filtering for candidate region
detection corresponding to void spaces. The components of
the pipeline are visualized in Fig 2.
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Fig. 2. Our pipeline with illustrations of results in intermediate steps.

A. Registering Point Clouds

Typically, all images processed through SfM result in the
reconstruction of a single metric 3D point cloud. Processing
all our images from four days together with SfM results
in a single noisy point cloud/3D rubble surface as features
on the dynamic rubble are not matched correctly over time.
Since our approach relies on stacking multiple point clouds
capturing the surface of the rubble from different days,
images from different flights need to be processed with SfM
separately. As SfM reconstructions are metric, the resulting
point clouds will not be in the same coordinate frame and
will differ by rotation and translation, requiring registration.

Early on, we processed our data to generate metric re-
constructions from different days with Agisoft Metashape
[29], assuming that standard point cloud registration methods
would achieve reasonable results with low translation and
rotation errors. However, a thorough comparison study of
three standard point cloud registration methods [30] showed
that these methods estimated registrations that at best had a
translation error of 0.83 m for point clouds that were initially
72 m apart. See Table I. Point clouds with such translation
errors will not suffice for assessing accurate dimensions of
void spaces which is necessary to determine envelopes for
robot operation. The key takeaway was that standard point
cloud registration methods failed for our highly dynamic
scene where multiple distractors such as vehicles, people,
collection containers etc., are present and reconstructed in
the point clouds. Additionally, it was observed that these
metric reconstructions had small variations in scale.

This motivated us to pivot to registering the frames in
which the point clouds are reconstructed. For this, we use a
parallel data processing method which utilizes components

TABLE I
LOWEST ROTATION AND TRANSLATION ERRORS OBTAINED BY POINT

CLOUD REGISTRATION TECHNIQUES

Algorithm Rotation
Error (°)

Translation
Error (m)

Point-to-Point ICP 1.0389 0.833
Rigid Coherent Point Drift 0.7402 0.889

PointNetLK 0.7438 1.062

of the standard Hierarchical Localization (hloc) + COLMAP
pipeline [31] [32] [7].

As our flights collected images of buildings and roads
surrounding the collapse site, processing all images would
be overkill. To reduce our processing we retain only im-
ages pertaining to the collapse. This is also done in an
semi-automated manner using learning-based image retrieval
with NetVLAD [33]. First, we manually picked all images
capturing the rubble and the adjoining standing portion of
the building from the set of all images captured on Day
1. This formed our base set of images. Each image in this
base set was then passed as a query to NetVLAD and the
closest match from each of the consecutive days was stored
in the retrieved set of images for the respective day. Closest
image retrieval for each query image against a set of ∼ 1000
images from Days 2, 3 and 4 took ∼ 1 min with NetVLAD
inference on our NVIDIA GeForce GTX 1080 GPU with 8
GB memory. Finding the closest images for the entire base
set comprising of 260 images took 4 hours, 35 mins.

All images from the base set and the three retrieved sets
were then processed with COLMAP for a joint camera pose
estimation for images from all days in a single coordinate
frame. A reconstruction was consequently obtained through
the COLMAP pipeline of feature matching, geometric ver-
ification, image registration, triangulation and bundle ad-
justment. This provides us with camera poses for images
from each day, but is however, a noisy combined sparse
reconstruction of the scene which fuses data from all days.
To obtain clean registered dense point cloud reconstructions,
we use estimated joint poses but process dense reconstruction
in parallel for data from different days. This resulted in
four registered dense point clouds, one from each day,
representing stacked layers of the rubble’s surface as it was
cleared. With the same GPU, joint camera pose estimation
for 1040 images took 6 hours. The dense reconstructions
were performed on an NVIDIA Titan RTX 24 GB GPU,
taking on average 25 minutes per reconstruction.

To refine this registration further for the rest of our
pipeline, we apply ICP to determine translation along the
depth axis (Z axis). This is done to minimize translation
error to zero for obtaining accurate measurements for void
dimensions. Once the translation error is negligible, we
proceed with candidate void detection.

B. Detecting Candidate Regions for Void Spaces

In this work, based on a few previously detected voids in
our data by SAR experts [34], we obtained a few appearance
priors for void regions and tried to automate the detection
of regions displaying such priors. We deemed the detected
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3D point cloud regions corresponding to such priors as
candidate void regions which were then compared to the
regions detected by experts as voids in the rubble. The
regions verified by experts as corresponding to voids (both
naturally occurring, as well as caused by excavation) are
annotated over a point cloud reconstruction of the scene from
day 1. See Fig 3.

Fig. 3. Annotated regions corresponding to voids located in the collapse
scene by experts. (Naturally occurring voids shown in double boundaries
and voids created by excavation shown in single boundaries)

As the rubble itself is highly dynamic due to the rescue
operations, feature matching in images of the rubble could be
sparse and erroneous. Therefore, images of static structures
around the rubble are retained and used in point cloud
reconstruction through the SfM pipeline. However, these
static structures need to be eliminated before we analyze
the point clouds for void detection. For this purpose, we
manually define a bounding box to crop all four point clouds
and retain only points corresponding to the rubble.

Once this is done, we proceed to slice the point clouds
along the X and Y axes with a slicing width of 0.25 m.
These stacked slices or ’cross-sections’ are analyzed through
plane fitting and color thresholding for detecting candidate
regions. Voids in structural collapses tend to present under
large debris such as concrete slabs, columns etc., [5] and are
dark near the opening (if present) at the surface. These are
the two characteristics we look for.

1) Plane fitting for sharp edge detection: To detect sharp
edges, we analyze the angles between planes fit to the surface
of the rubble. For fitting reasonably small planes to the
surface, we need to divide the point cloud into point clusters
which are small, having geometries that can be approximated
by planes. We leverage octrees for this purpose and obtain
such clusters from deep tree cells.

An octree was created for each individual sliced point
cloud in the cross-section with a maximum depth of 8. We
queried point clusters at the deepest level of the octree and
found through multiple trials that this gave us adequately
granular plane fitting. We fit a plane to each point cluster
using the least-squares method and also find a projection of
the centroid on the fit plane. Using these projected centroid

points to find the nearest neighbours, we then calculated
the angles of a given plane to its two closest neighboring
planes. We chose two neighbours as each fit plane spans
the entire width of the slice and the two nearest neighbours
capture the angles of the current plane with its preceding
and following planes. Any angle determined to be greater
than 45◦ indicated a sharp edge and the corresponding point
clusters resulting in this angle are retained as part of a
candidate region.

2) Color thresholding for dark region detection: The
retained points from the plane fitting procedure are then
subjected to a color thresholding to detect dark regions [35].
All points with colors between [0, 0, 0] and [0.2, 0.2, 0.2] in
the RGB space are retained with the others being discarded.

3) Point density as an indicator of void spaces: In our
data, we find that the above two processes are sufficient
to detect most candidate void regions sufficiently well.
However, we also hypothesized and tested a filtering based
on point density for detecting these candidate regions. Most
void spaces with sufficiently wide openings would present as
dark regions in images. Standard feature detection methods
do not detect feature matches in the pixels corresponding to
these dark regions. Therefore, unless extensive hole filling
methods are applied to make the point cloud reconstructions
smooth and dense, such dark regions could appear as holes
or low point density patches in the reconstructed point clouds
[36]. Looking for such regions can be an alternative to
detecting dark regions, and in tandem with plane fitting, can
help capture candidate regions when the color thresholding
behaves unexpectedly due to change in lighting or needs fine-
tuning.

In our implementation, for point clusters retained after
plane fitting to slices, we checked for point density by
defining a neighbourhood radius. All points having a
number of neighbours in this radius lower than 0.75 times
the average across the point cloud, were retained as part
of identified candidate regions. We used this method after
plane fitting as a parallel step to color thresholding and
add newly detected regions to those identified by color
thresholding.

After these methods, we apply a final noise filtering by
using surface normals and DBScan Clustering with eps =
0.2 [37]. All point clusters that present surface normals
pointing upwards are likely part of planar rubble and not
voids. DBScan helps us remove very small point clusters
which were erroneously picked up during plane fitting as
it is susceptible to noise. It also helps us group sufficiently
close point clusters as being a part of a larger void. Through
this, we are able to retain larger detected point clusters
corresponding features seen for voids.

We implement this detection method through two data
processing schemes. In the first scheme, all candidate regions
are found in the cropped point cloud from day 1 and
no data from the consecutive point clouds is used. The
main assumption here is that most regions having void-
like characteristics would be visible before rubble clearing
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TABLE II
ROTATION AND TRANSLATION ERRORS FOR REGISTRATION OBTAINED

FROM OUR METHOD

Comparison Pair Rotation
Error (°)

Translation
Error (m)

Day 2 to Day 1 0.0002 0.0744
Day 3 to Day 1 0.0006 0.1755
Day 4 to Day 1 0.0017 0.1929

begins. However, taking into account that more void spaces
can be uncovered as debris are cleared, we also use a second
scheme, where only the point cloud regions with detected
height changes as compared to the next point cloud, are
processed through our detection pipeline.

C. Finding the maximum height of the detected voids

Once all candidate regions are located, we expand them
by 3 m in both the X and Y axes to analyze a slightly larger
region for obtaining the maximum height. For each point
in the enlarged detected candidate region, by finding the
corresponding points in the next layer, we compute point-
wise distances. We provide the maximum distance as an
upper bound on the height of the candidate void. In reality,
given that voids are typically situated beneath large and thick
debris, it is most likely possible that the true height of the
void is lower. However, this value is hard to ascertain through
imagery alone.

V. RESULTS

A. Registration

As we assigned images from day 1 to be the base set for
our registration through SfM pipeline, we consider the point
cloud reconstructed from images from day 1 to be the target,
and the remaining point clouds to be sources. Rotation and
translation errors from our method are presented in Table II.

It is observed that the rotation error is mostly negligible.
The translation errors, with an average value of 0.1476 m,
have drastically reduced in comparison to using standard
point cloud registration methods for individual metric re-
constructions. From a minimum translation error of 0.83 m
[30], we are able to improve registration with our method
by reducing the translation error by a further 0.68 m on an
average. This is an 82% reduction in translation error.

Most of the remaining translation offsets from our method
were along the Z (vertical) axis, perhaps due to depth
ambiguity in the SfM pipeline arising from the dynamic
nature of the scene and a low ratio of oblique images.

B. 3D Reconstruction

COLMAP is an open source SfM solution that has not
been applied widely for reconstructing search and rescue
scenes, and has not been used to reconstruct multiple regis-
tered time-instance point clouds for a highly dynamic scene.
In addition to quantifying how well it works for registration,
we also quantify its performance in 3D reconstruction. This
is done to provide a better understanding of how well
COLMAP fares against reconstructions from commercial
photogrammetry software like Agisoft Metashsape which are
widely used by SAR experts.

Fig. 4. Top: Point cloud from day 1 bounded by user-defined crop. Bottom:
Detected candidate void regions (true and false positives) overlayed on the
point cloud.

We compare a point cloud reconstructed from our method
against a reference reconstruction from the same data with
Agisoft Metashape. We find that the average Root Mean
Square Error is 0.115 m. The application of statistical outlier
filtering shows that 1.7% of the points in our reconstruc-
tion are outliers. These values indicate that the COLMAP
reconstruction has a high fidelity and is very close to the
reconstruction from Agisoft Metashape [38]. Some regions
with sparse correspondences lead to gaps in the reconstruc-
tion from COLMAP, however, the region corresponding to
the rubble is as dense as the reconstruction from Agisoft
Metashape.

C. Void Detection

We implement the candidate void detection pipeline - (1)
for the entire cropped region of the point cloud pertaining
to the rubble from day 1, and (2) for the points retained
in the crop from day 1 after checking for height changes
between subsequent layers. The detected regions are visually
overlayed on the point cloud of the collapse site, shown
in Fig 4. We compare the regions detected by our pipeline
against the ones identified by experts as voids and present
how many of the naturally occurring and excavation artifact
voids were detected. We also present how many extra can-
didate regions (false positives) were captured in the point
cloud which did not correspond to true voids. See Table III.
Locating survivors is most important in SAR, therefore false
positive detections are less harmful than missed true voids.
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TABLE III
PERFORMANCE OF OUR DETECTION METHOD FOR TWO PROCESSING

SCHEMES

Point Cloud
Processing

Scheme

Naturally
Occuring

Voids
Detected

Excavation
Related
Voids

Detected

False
Positives

Total
Candidates

Point Cloud
from Day 1 4/4 5/6 18 28

Height
thresholded

regions
4/4 5/6 6 16

Here, we observe that both point cloud processing schemes
detect 11 out of 12 void regions in the rubble pile, failing to-
gether only on a single region corresponding to an excavation
artifact. One key result to note is that the second processing
scheme, which uses only the point cloud regions that have
changed in height over time, provides us with lesser false
positive candidates, and is therefore, the preferred processing
scheme. This shows that the layering method is better for
candidate void detection.

Figs. 5 - 8 show the regions of the rubble corresponding to
four detected void regions (two naturally occurring and two
excavation artifacts) and their corresponding cross-sections
showing maximum heights.

Fig. 5. The naturally occurring green void region and its corresponding
cross section along the XZ axis. The removal of some material in the green
void region is seen between day 1 and day 2.

D. Heights of void regions

Table IV shows the cause of formation and measured
maximum height found through our method for all 10 expert-
identified voids. As the cyan void was not captured by our
method, we do not present a measured height for it. We find
that the average maximum height of candidate void regions is
1.6 m. Most of these voids themselves are not large enough
to be survivable. However, they could offer breathing space
to survivors. These dimensions and the corresponding cross-

Fig. 6. The naturally occurring magenta void region and its corresponding
cross section along the YZ axis. Features similar to the green void are
observed in the cross section.

TABLE IV
DETECTED VOIDS AND THEIR MEASURED MAXIMUM HEIGHTS

Identified
Void Cause

Max
Height

(m)

Identified
Void Cause

Max
Height

(m)
Magenta Natural 1.10 Yellow Excavation 1.62

Green Natural 0.97 Cyan Excavation -
Lime Natural 2.29 Orange Excavation 1.84
Pink Natural 1.30 Purple Excavation 1.94
Blue Excavation 1.59 Maroon Excavation 1.75

sections show the types of void spaces that a robot would
need to reach and inspect.

VI. CONCLUSION

To advance a crucial part of SAR operations, we present
a novel method for generating a layered multi-day 3D point
cloud reconstruction of a dynamic scene and apply this to
ex post facto void detection in rubble with limited human
input. We utilize image registration and joint camera pose
estimation in SfM to reconstruct registered point clouds in
parallel, becoming the first to do so for a highly dynamic
and unstructured SAR scene. We show the benefit of using
this registered layering of point clouds not only to determine
the heights of uncovered voids but also to detect candidate
void regions with lower false positives. Our method for
void detection is a systematic approach that starts with all
points in the rubble region of the point cloud and filters
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Fig. 7. The excavation artifact occurring for the blue void region and
its corresponding cross section along the YZ axis. The presence of pillars
shows two peaks in the cross section. Gaps were formed under the pillars
as debris was cleared.

out uninteresting regions through multiple priors such as
checks on edges and color. The whole process helps us
reduce errors in point cloud registration and make our height
measurements between layers more accurate. We also show
that our candidate void detection method successfully locates
all naturally occurring voids in the rubble and captures al-
most all excavation-generated void regions, with a reasonable
number of false positives.

VII. DISCUSSION AND FUTURE WORK

We observe that the translation error from our registration
method is majorly along the Z axis which is the depth axis
in our SfM pipeline. This is caused due to depth ambiguity
which can be lowered in future data collections by including
more oblique images. Post our registered reconstruction,
we use ICP for estimating transformations that minimize
our translation errors to zero. However, we perform this
registration only along the Z axis. This is done as we
observed that the dynamic features in the point clouds were
affecting the point correspondences detected in ICP and
causing the algorithm to fall into local minima during the
optimization process. Using the obtained transformations for
registration in all three axes was causing translation errors
to increase further. This fundamental problem motivates the

Fig. 8. The excavation artifact occurring for the maroon void region and
its corresponding cross section along the XZ axis. There was a gap created
under a ledge after rescue workers cleared some debris.

development of a point correspondence finding method that
can work well with dynamic point clouds.

Currently, we require a human to specify the point cloud
region corresponding to the rubble. The layering approach
can help us identify dynamic elements through height dif-
ferences. While this should ideally only capture parts of
the rubble that were cleared, it captures many distractors
such as people, vehicles, vegetation etc., as well, making
a human-defined crop necessary to retain purely the rubble
for void detection. In the future, the application of point
cloud segmentation can help segment these dynamic features
and remove them from the scene before we apply our void
detection method. The overall processing time is currently
high given that much of our processing was performed on a
GPU with 8 GB memory. However, since NetVLAD and
COLMAP are highly parallelizable, using multiple GPUs
or GPUs with higher memory can effectively reduce the
compute time.

Lastly, our candidate void detection method depends on
certain heuristic values which we have fine-tuned for our
dataset. While these can be tweaked to suit other datasets,
efforts should be made to adjust the method to suit multiple
SAR datasets. For this purpose, testing on other publicly
available datasets is planned.
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